Обслуживание регулятора РДУК
До включения регулятора стакан пилота должен быть вывернут до полного расслабления пружины. Все запорные устройства перед регулятором и на импульсной трубке должны быть полностью открытыми. При включении сначала открывают кран на свечу, с тем чтобы обеспечить небольшой расход газа, а затем медленно ввертывают регулировочный стакан пилота. Его пружина сжимается, в контролируемой точке появляется давление, фиксируемое по манометру. Дальнейшим ввертыванием стакана повышают выходное давление примерно до заданного и создают расход газа. После этого производят более точную настройку регулятора. При отключении регулятора на длительное время регулировочный стакан пилота вывертывают до полного ослабления пружины.
Для осмотра входной части КР снимают верхнюю крышку корпуса, вынимают фильтр и плунжер со штоком. Фильтр тщательно очищают от пыли, при необходимости промывают и высушивают. Плунжер, седло, направляющие втулки колонки, шток и толкатель протирают мягкой ветошью, уплотняющую шайбу плунжера при видимом износе заменяют новой. Шток плунжера должен свободно перемещаться во втулках колонки. Контроль хода штока производят через пробку в нижней крышке мембранной коробки.
Смазка трущихся металлических поверхностей регулятора допускается только при тонкой очистке газа от механических примесей в фильтре, установленном перед регулятором.
Мембрану осматривают при снятой нижней крышке мембранной коробки. Правильная центровка мембраны при сборке обеспечивается установкой опорной чашки в кольцевой проточке нижней крышки. При осмотре следует тщательно продуть дроссели внутри специальных болтов.
Для осмотра регулирующего узла пилота вывертывают верхнюю пробку крестовины и вынимают плунжер. Если засорение сильное, то отвертывают нажимную втулку седла, вынимают седло с прокладкой и внутреннюю полость крестовины продувают. При осмотре и сборке мембранного узла следует следить, чтобы толкатель плунжера своим острым концом находился в гнезде стяжного болта мембраны, а в верхнее коническое углубление толкателя попадал нижний конец шпильки плунжера. Если нажимать на мембрану снизу, то сначала должен наблюдаться холостой ход не менее 2 мм, а затем подниматься на 1,5—2 мм плунжер. Эту степень открытия можно установить подгонкой длины шпильки.
У регулятора с пилотом КН2 при настройке выходного давления на 0,02—0,03 кг/см2 погрешность регулирования может достигать 15 %, при настройке на 0,5— 0,6 кгс/сма может оказаться ниже 1—2 %. В последнем случае возможно неустойчивое регулирование, и тогда приходится снижать чувствительность пилота, используя в нем пружину КВ2. В общем случае возможность появления неустойчивого регулирования возрастает с увеличением входного давления и уменьшением расхода газа. Для повышения устойчивости регулирования на трубке б устанавливают дроссель диаметром 3, 4 или 6 мм соответственно для регуляторов Dy 50, 100 и 200 мм.
Причинами нарушения режима работы регулятора в процессе эксплуатации являются: засорение клапанного устройства пилота, заедание штока плунжера КР или шпильки плунжера пилота, обмерзание плунжера, засорение дросселей на обвязочных трубках регулятора.
Так как чаще всего наблюдается засорение седла в пилоте и дросселей, то с них и следует начинать осмотр. Дроссельные, импульсные и обвязочные трубки регулятора тщательно продувают. При необходимости замены шпильки плунжера пилота ее изготовляют из прямого отрезка стальной пружинной проволоки диаметром 1,4 мм. Концам шпильки придают сферическую форму.
По этому признаку различают:
— регуляторы непосредственного или прямого действия — здесь регулирующий орган (клапан) находится под непосредственным воздействием регулируемого параметра (напрямую или через зависимое механическое устройство). При изменении параметра давления на входе, перекрывающий клапан приводится в действие усилием, достаточным для смещения регулирующего органа без постороннего источника энергии. Такое усилие возникает в чувствительном элементе регулятора под действием давления регулируемой среды. Регулятором такого типа является, например РД-120 и РПДС.
— регуляторы непрямого действия или автоматические регуляторы — здесь, чувствительный элемент воздействует на регулирующий орган (клапан) при помощи постороннего источника энергии, в качестве которого может выступать жидкость, газ, воздух или электрический ток. Таким образом, в регуляторах непрямого действия, усилие, которое возникает в чувствительном элементе регулятора при изменении величины параметра давления регулируемой среды, приводит в действие не сам клапан, а лишь вспомогательное устройство. К таким устройствам, например, относят микропроцессорный регулятор давления КР-1Д.
Регулятор давления КР-1Д
И хотя оба вида регуляторов давления конструктивно состоят из регулирующего клапана, чувствительного или измерительного элемента, а также управляющего элемента, они имеют некоторые особенности, которые мы попробуем занести в таблицу.
Признак |
Регулятор прямого действия |
Регулятор непрямого действия |
Конструкция регулирующего клапана |
Регулирующий клапан, в качестве составных частей, обладает чувствительным и управляющим элементом. Они неотделимы от него. |
Регулирующий клапан — это самостоятельное устройство, а чувствительны и управляющий элементы отделены от него. |
Чувствительность прибора к изменению давления |
Меньшая чувствительность, относительно регуляторов непрямого действия, поскольку, при изменении величины давления среды, регулирующий клапан начинает изменять положение только после возникновения усилия, которого было бы достаточно для преодоления сил трения во всех подвижных частях. |
Повышенная чувствительность, относительно регуляторов прямого действия, поскольку силы трения здесь преодолеваются благодаря постороннему источнику энергии. Т.е. не требуется применения значительного усилия на мембрану. Регулирование здесь происходит более плавно. |
Самыми популярными регуляторами расхода и давления прямого действия являются регуляторы РР и РД, исполнений НО и НЗ.
Регуляторы как прямого, так и непрямого действия могут быть непрерывного и прерывного действия. Отличие между непрерывными и прерывными регуляторами состоит в том, что регуляторы прерывного действия, в условиях непрерывно меняющегося параметра давления среды, изменяют положение регулирующего клапана только периодически, интервально. Регуляторы непрерывного действия изменяют, положение регулирующего клапана постоянно.
Также, существует такой параметр как «до себя» и «после себя». Регуляторы давления «после себя» наиболее распространены, их задача — регулировать давление на отрезке трубопровода, который находится по ходу движения среды после регулирующего устройства. Применимы они для осуществления безопасной работы котлов, бойлеров, стиральных машин, газовых станций и газгольдеров. Регуляторы давления «до себя» автоматически регулируют давление на участке трубопровода, находящегося до регулятора давления. Сфера их применения: системы центрального отопления для поддержания давления в обратном трубопроводе, системы подачи топлива, сисетмы вентиляции и др. Примером регуляторов давления, имеющих и то и другое исполнение являются регуляторы РДС-НО (НЗ), в обозначении которых НО — обозначает «после себя», а НЗ — «до себя».
В заключение отметим, что выбирая регулятор давления, будь то УРРД с разгрузкой по давлению, или РД-510 с пилотным управлением, или ещё какой промышленный регулятор учитывайте перекачиваемые среды, условия эксплуатации, необходимый диапазон регулировки, температуру и исполнение прибора. А если возникнут сложности с выбором регулятора давления, наши специалисты всегда помогут Вам подобрать редуктор (регулятор) давления под Ваши нужды.
Регуляторы давления газа РДУК-50, РДУК-100, РДУК-200
Предназначены для снижения давления газа в газопроводах с высокого на высокое, среднее и низкое давление, а также со среднего на среднее и низкое.
Регуляторы могут быть использованы на закольцованных и тупиковых городских сетях, регуляторных станциях, на промышленных и коммунально-бытовых газифицированных объектах.
Эти регуляторы относятся к регуляторам непосредственного действия с командным прибором.
Надмембранное пространство регулятора управления импульсной трубкой соединяется с газопроводом за регулятором давления. Таким образом, давление над мембраной регулятора управления всегда равно давлению газа в газопроводе. Регуляторы Давления типа РДУК-2 разработаны на условные проходы 50, 100 и 200 мм. Давление под мембраной регулятора управления равно атмосферному. Когда давление в газопроводе равно установленному, усилие от давления газа на мембрану регулятора управления равно усилию пружины. При этом клапан регулятора управления частично открыт.
При понижении давления в газопроводе пружина преодолевает усилие от давления газа на мембрану, в результате чего последняя поднимается кверху, увеличивая открытие клапана. При повышении давления открытие клапана уменьшается. Расход; газа, протекающего через клапан регулятора управления, пропорционален величине его открытия. Для установки регулятора управления на требуемое давление изменяют сжатие пружины.
Головка регулятора управления трубкой соединяется с подмембранным пространством регулирующего клапана, которое соединено трубкой с подклапанным пространством. Чтобы регулирующий клапан начал действовать, давление в подмембранном пространстве должно создать усилие, больше суммы усилий, создаваемых входным давлением на клапан и выходным давлением на мембрану в надмембранном пространстве.
Необходимый перепад давления между подмембранным и над-мембранным пространством создается благодаря наличию дросселей в трубках.
В качестве командного прибора применяются регуляторы управления КН2 и КВ2.
Регуляторы давления типа РДУК-2 изготавливаются Московским заводом газовой аппаратуры и Саратовским заводом «Газоаппарат».
В настоящее время выпускаются регуляторы нового типа — блочные конструкции Ф. Ф. Казанцева (РДБК). Они отличаются универсальностью и повышенной надежностью в работе. Неравномерность выходного давления при использовании РДБК меньше, чем при использовании РДУК.
РДУК-200 |
РДУК изготавливается в следующих исполнениях:
- РДУК-50Н(В) Ду-50 с низким или высоким выходным давлением и диаметром седла 35 мм — РДУК-50Н(В)/35;
- РДУК-100Н(В) Ду-100 с низким или высоким выходным давлением и диаметром седла 50, 70 мм — РДУК-100Н(В)/50(70);
- РДУК-200Н(В) Ду-200 с низким или высоким выходным давлением и диаметром седла 105, 140 мм — РДУК-200Н(В)/105(140).
Диаметр седла влияет на пропускную способность регулятора — чем больше седло, тем больше пропускная способность. Используется в системах газоснабжения различных объектов. Устанавливаются в газораспределительных станциях (ГРУ, ГРПШ, ГРПБ) систем подачи газа.
Продольный разрез и схема присоединения регулятора РДУК-100
Устройство регуляторов
Устройство регулятора давления содержит в себе две составляющие – регулирующий элемент и исполнительную часть. Главная деталь исполнительной части называется чувствительным элементом, производящим сравнение сигнала, исходящего от задатчика с показателями текущего давления. После чего исполнительная часть преобразовывает полученный сигнал в регулирующее действие. Стоит отметить, что регуляторы бывают прямого, а также непрямого действия, но оба эти вида имеют как прерывное, так и непрерывное действие. Регуляторы, обладающие прямым действием, имеют регулирующий элемент в прямом виде, который действует при помощи усилия. Устройства, имеющие непрямое действие, приводят в работу регулирующий элемент при помощи стороннего источника, к примеру, воздуха, газа, либо же жидкости.
Работа регулятора на разных режимах
Если рассмотреть упрощенно принцип действия, то он достаточно прост. Насос закачивает топливо в рампу, из которой оно попадает также и в топливную камеру регулятора. Как только сила давления превысит жесткость пружины, мембрана начинает перемещаться в сторону вакуумной полости, увлекая за собой клапан. В результате канал слива открывается и часть бензина стекает в бак, при этом давление в рампе падает. Из-за этого пружина возвращает клапан с мембраной на место, и обратный канал закрывается.
Но как уже упоминалось, РДТ подстраивается под режим работы мотора. И делает это он за счет разрежения во впускном коллекторе. Чем больше будет это разрежение, тем сильнее будет его воздействие на мембрану. По сути, создаваемый вакуум создает противодействующее усилие пружине.
На деле все выглядит так: для работы мотора на холостом ходу увеличение количества топлива не нужно, поэтому и не требуется и повышенного давления.
На этом режиме работы дроссельная заслонка закрыта, поэтому во впускном коллекторе воздуха недостаточно и создается разрежение. А поскольку вакуумная камера связана с коллектором патрубком, то вакуум создается и в ней. Под воздействием разрежения мембрана давит на пружину, поэтому для открытия клапана нужно меньше давления бензина.
При нагрузке же, когда дроссельная заслонка открыта, разрежения практически нет, из-за чего мембрана не участвует в создании усилия на пружину, поэтому давления требуется больше. Таким образом этот элемент функционирует в системе питания в зависимости от режима работы мотора.
Особенности конструкции
Регулятор давления бензина – один из немногих элементов системы, который не управляется с электронного блока. Этот узел – полностью механический и его функционирование основано на перепадах давления. Хотя в системах без рециркуляции срабатыванием датчика заведует ЭБУ. Поскольку встречаются они не часто, то далее рассматривать такие узлы мы не будем.
Стоит отметить, что РТД работает не в строго заданных значениях, он подстраивается под режим работы двигателя. То есть, при надобности он увеличивает или уменьшает давление в системе, чтобы обеспечить оптимальное смесеобразование.
Конструктивно этот элемент очень прост и состоит из корпуса, на котором расположены штуцеры и выводы для подсоединения к системе питания. Внутри этот корпус разделен мембраной на две камеры – топливную и вакуумную.
К топливной полости подходят для вывода – один используется для подачи топлива в камеру, а второй ведет на магистраль слива бензина в бак (обратку). Но второй канал закрыт клапаном, который связан с мембраной.
Со стороны вакуумной полости установлена пружина, которая воздействует на мембрану, обеспечивая перекрытие канала слива клапаном. Эта камера посредством штуцера трубкой соединена с впускным коллектором.
Изодромный регулятор газа
Если статическую систему контроля давления можно охарактеризовать как модель с жесткой обратной связью, то изодромные устройства взаимодействуют с упругими элементами восстановления характеристик. Изначально в момент фиксации отклонения от заданной величины регулятор займет позицию, которая соответствует значению, пропорциональному показателю отхождения от нормы. Если же давление не нормализуется, газовая арматура будет смещаться в сторону компенсации до тех пор, пока показатели не придут в норму.
С точки зрения характера эксплуатации изодромный регулятор можно назвать средним устройством между астатическими и статическими моделями. Но в любом случае отмечается высокая степень независимости данной регулирующей механики. Существует и разновидность изодромной арматуры с предварением. Данное устройство отличается тем, что скорость смещения исполнительного органа изначально превышает темпы изменения давления. То есть техника работает на опережение, экономя время на восстановление параметра. В то же время регуляторы с предварением затрачивают больше энергии от внешнего источника.
Бытовые и коммерческие регуляторы давления в газопроводах
Конструкционное, функциональное и эргономическое исполнение запорной арматуры в итоге сводится к требованиям конкретной сферы применения. Акцент делается на непосредственных рабочих параметрах, среди которых выходное давление, диапазоны замеров, объемы расхода и др. Так, газовые регуляторы давления для бытовых сетей, как правило, характеризуются низкой пропускной способностью и скромным спектром возможностей для настройки. С другой стороны, в такой арматуре делается ориентировка на безопасность и удобство эксплуатации. На практике бытовые регуляторы используются в системах газоснабжения котлов, плит, горелок и прочей домашней техники.
Промышленное и коммерческое применение накладывает более высокие требования на средства контроля газовых сред. Устройства этого типа отличаются расширенными диапазонами показателей выходного и входного давлений, точностью настроек, более высокой пропускной способностью и наличием дополнительных функций. Подобные модели используются газовыми службами, контролирующими снабжение объектов социального назначения, общепита, промышленности, инженерного хозяйства и т. д. Уже отмечалось, что существуют разные регуляторы с точки зрения сложности конструкционного исполнения. Но это не значит, что в промышленном секторе, например, применяются только лишь многофункциональные комбинированные устройства. Простейшие средства управления могут быть полезными на предприятиях благодаря высокой надежности и ремонтопригодности.
Ручник
Так же необходимо провести регулировку ручной стояночной тормозной системы. При неправильной ее функциональности может происходить заклинивание тормозных колодок.
Регулировку ее надо проводить после 30000 км эксплуатации автомобиля или при первых признаках некачественной работы.Для регулировки потребуется:
- гаражное помещение со смотровой ямой,
- обычный набор ключей.
Приступим:
- Включить переднюю передачу.
- Под передние колеса поставить для надежности упоры.
- Заднюю подвеску автомобиля необходимо поднять домкратом, подставить надежные подпорки.
Начинать надо с проверки рычага, который находится в салоне автомобиля между двумя передними пассажирскими сидениями. Поднять его на два или три щелчка.
При поднятии произведен один щелчок, значит, перетянут. Это приводит к блокировке задних барабанов тормозными колодками.Если произведено более 8-ми, тогда трос ослаблен, ручник не работает:
- При включенном ручном тормозе спуститься в смотровую яму.
- Ослабить первую контрящую гайку на уравнителе.
- Вторую гайку подтянуть, чтобы трос был в натянутом положении.
- При необходимости наоборот отпустить.
- Проверить работу рычага. Он должен срабатывать на два или три щелчка.
Тогда с ямы затянуть первую гайку, затяжку проводить двумя ключами, чтобы получить эффект затяжки двух гаек:
- После этого выключить стояночную систему.
- Провести проверку вращения задних колесных дисков.
Руками произвести вращательные движения. Вращение их должно проходить без рывка, спокойным прокручиванием по оси автомобиля.
Звук должен исходить шуршащий. Следовательно, регулировка тормозной системы автомобиля проведена успешно.
Автотранспортное средство готово к продолжению эксплуатации.Так же регулировку тормозов можно провести в автомобильной мастерской.
Доверить выполнение этой работы можно специалистам. Но надежность автомобилист испытывает, тогда, когда эта работа произведена самостоятельно.
Технически исправным автомобиль может считаться, когда самостоятельно проводится его осмотр и ремонт. Он никогда не подведет в трудную, опасную минуту.
Кроме того, цена на ремонт в СТО бывает высокой. При выполнении работ своими руками надо внимательно просмотреть видео.
Также надо изучить фото, при необходимости взять их на место проведения ремонта. Разложить на стеллаже или заднем сидении машины.
При необходимости еще раз их просмотреть. Прочитать инструкцию проведения операции, мест расположения необходимых конструкций.
Закончить регулировку, проверить на свободном асфальтированном участке проведенную работу.
Регулятор давления тормозов «ВАЗ», как, впрочем, и любого другого транспортного средства, представляет собой устройство, функциональное назначение которого заключается в обеспечении устойчивости, то есть способности автомобиля удерживать заданное направление и положение на дорожном полотне в процессе торможения.
Практическая реализация данной функции происходит в результате преобразования значения тормозной силы вследствие влияния следующих факторов:
нажатия водителем тормозной педали;
степени загрузки транспортного средства;
интенсивности торможения.
Чем же продиктована необходимость применения регулятора давления? В первую очередь — безопасностью. Даже самые высококачественные шины не гарантируют отсутствия проскальзывания элементов протектора относительно дорожного полотна в продольном направлении, что, в свою очередь, инициирует уменьшение сопротивления колеса силам, направленным перпендикулярно оси автомобиля. Возникает, так называемый «юз».
Любой тормозной механизм, независимо от своей конструкции, в той или иной степени блокирует колесо
Однако достаточно важно, в какой именно последовательности происходит блокировка и провоцируемый ею «юз». Наименее опасным считается вариант, при котором блокировка передней колесной пары происходит раньше, чем блокировка задней. Использование в тормозной системе регулятора давления тормозов, как раз и призвано обеспечить именно такую последовательность блокировки колес
Использование в тормозной системе регулятора давления тормозов, как раз и призвано обеспечить именно такую последовательность блокировки колес.
РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ
У регуляторов давления прямого действия регулирующее устройство приводят в движение мембраной, находящейся под воздействием регулируемого давления.
Изменение регулируемого (рабочего) давления вызывает смещение мембраны, а через передаточный механизм и изменение количества прохода газа через регулирующее устройство регуляторов давления.
Таким образом, на изменение рабочего давления регулятор давления реагирует изменением количества пропускаемого газа.
Принцип действия регулятора давления прямого действия показан на рисунке.
Газ с давлением поступает во входной патрубок регулятора, затем проходит через седло клапана 2 и уходит из регулятора через выходной патрубок 3. Регулятор должен поддерживать после себя рабочее давление постоянные в условиях переменного расхода.
При изменении расхода газа будет изменяться рабочее давление которое воздействует снизу на мембрану 4. При увеличении расхода газа давление в первый момент несколько упадет и сила, действующая на мембрану снизу, несколько уменьшится, в результате чего под действием груза 5 мембрана вместе с клапаном 6 сместится на некоторую величину вниз и увеличит проход для газа. Давление поднимется до прежней величины.
При уменьшении расхода газа давление в первый момент несколько увеличится и мембрана будет смещаться вверх, прикрывая проходное сечение для газа клапаном. Уменьшение подачи газа через регулятор вызовет снижение до первоначальной величины.
Таким образом, регулятор давления будет поддерживать рабочее давление на заданном уровне, который определяется величиной нагрузки мембраны.
Учитывая, что разнообразие конструкций регуляторов давления очень велико, будут рассмотрены только те конструкции, которые широко используются при городском газоснабжении.
Регулятор давления РДК. Нормальная работа бытовых газовых приборов в большой степени зависит от постоянства давления газа во внутри домовых газовых сетях.
При газоснабжении бытовых потребителей сжиженным газом применяют регулятор давления типа РДК, используемый при баллонных установках и рассчитанный на начальное давление до 16 кгс/см2.
Давление на выходе можно регулировать в пределах 100—300 мм вод. ст. Производительность регулятора при перепаде давления в 1 кгс/см2 и удельном весе пропанбутановой смеси около 2 кг/м3 равна 1 мз/ч. На рис. показано устройство регулятора.
Газ высокого давления поступает через входной штуцер под клапан 2 с уплотнением из масло-, бензо- и морозостойкой резины. Положение клапана по отношению к седлу, расположенному на входном штуцере, определяется положением мембраны 3, связанной с клапаном рычажно-шарнирным механизмом.
На мембрану сверху воздействует пружина 4, а снизу давление газа. Сжатие пружины регулируется винтом 5, которым осуществляют настройку регулятора на рабочее дав¬ление. В этом случае газ, проходя через клапан, будет его и поступать через выходное отверстие 6 регулятора к газовым приборам.Если выходное давление будет повышаться сверх заданного, то пружина 4 сожмется, мембрана пойдет вверх и через рычажно-шарнирный механизм 7 подаст клапан вниз и уменьшит проход газа через регулятор. В мембрану регулятора вмонтирован предохранительный клапан 8, который работает следующим образом: при закрытом клапане 2 и повышении давления под мембраной сверх установленного (‘при отсутствии расхода газа и неплотном закрытии клапана) мембрана, преодолевая действие пружины 4 и пружины 9 предохранительного клапана 5, отойдет от уплотнения 10 и сбросит излишек давления газа через отверстие под верхнюю крышку 12 регулятора, которая соединяется выбросной трубкой с атмосферой.
После настройки регулятора на определенное рабочее давление регулировочный винт 5 закрывается колпачком 13 и закрепляется винтом 14, который пломбируется. Абонентам запрещается производить регулировку давления газа винтом 5.
Для создания нормальных условий работы регулятора давления, когда положение клапана находится в области регулирования, расчетная производительность его должна быть примерно на 20% больше требуемой максимальной производительности регулятора. По этой причине регулятор рекомендуется подбирать так, чтобы он был загружен при требуемой производительности не более чем на 80%, а при минимальном расходе не менее чем на 10%.
Регулятор давления РДК
Разновидности регуляторов давления
Параметры производительности бытового типа устройств не превышают трёх кубометров в час.
Современные редукторы давления воды весьма востребованы и разнообразны, что позволяет выполнить классификацию этих устройств с учётом нескольких признаков:
Основной из критериев при выборе, который позволяет подразделить регулирующие давление воды устройства на бытовой, коммерческий и промышленный типы. Параметры производительности бытового типа устройств не превышают трёх кубометров в час.
Для коммерческих редукторов этот показатель составляет от трёх до пятнадцати кубометров, а промышленный тип регуляторов обладает производительностью свыше пятнадцати кубометров за такой же период времени.
Для подключения в условиях двух дюймовых трубопроводов использованию подлежит резьбовой тип редуктора. Фланцевая разновидность применяется для обустройства труб, обладающих более значительными размерами диаметра.
максимальное давление на вход
Выпускаются приборы для установки в водопроводных системах с параметрами давления не более шестнадцати бар или более мощные устройства, позволяющие выдерживать почти двадцать пять бар.
максимальный рабочий температурный режим
Приборы для холодного водоснабжения с максимальным значением в 40 °C и регуляторы для установки на систему горячего водоснабжения, которые выдерживают температурный режим в 70 °C.
Принцип работы
Снижение давления газа в регуляторе давления РДУК происходит за счет перемещения тарельчатого плунжера с резиновым уплотнителем относительно седла регулирующего клапана. Плунжер приводится в движение разницей входного давления (воздействует на тарелку сверху) и выходного давления (воздействует снизу).
Газ с высоким (входным) давлением проходит через фильтр и подается на малый клапан пилота. Затем он через демпфирующий дроссель (калиброванное отверстие) подается под мембрану регулирующего клапана. Излишний объем газа из подмембранного пространства сбрасывается в газопровод посредством сбросного дросселя.
Импульсы выходного давления поступают по соединительным трубкам на мембраны пилота и регулирующего клапана. Под мембраной регулирующего клапана всегда поддерживается давление выше выходного. Оно автоматически корректируется малым клапаном пилота (в зависимости от расхода газа и уровня входного давления). Этой разницей давлений обусловлена подъемная сила мембраны.
Даже при незначительном отклонении выходного давления от заданного значения меняется давление в подмембранном пространстве. Это, в свою очередь, вызывает перемещение основного клапана. Таким образом выходное давление постоянно поддерживается на требуемом уровне.