Тепловые электростанции (тэс)

Ископаемое топливо: характеристика, проблематика

Природные запасы ископаемого топлива – это модифицированные продукты распада животных и растений, погибших миллионы лет назад. Когда они сжигаются на специализированных предприятиях, выделяется тепловая энергия, которая применяется для производства электрической.

Теплоэнергетика России

Сегодня переход на чистые возобновляемые источники энергии является политической задачей всего мира. Это обусловлено тем, что ископаемое топливо будет исчерпано в течение последующих 200 лет, а мировые поставки сырой нефти и природного газа, по оценкам специалистов, иссякнут в течение 100 лет.

Но есть и преимущества ископаемого топлива:

  • Высокая эффективность. Оно может быть добыто относительно дешевым способом, а транспортировка его сравнительно быстра и удобна.
  • Технологии, необходимые для генерирования электроэнергии, давно отработаны, оборудование является надёжным, его легче приобрести и эксплуатировать, чем, например, устройства для солнечных или ветровых электростанций.

Помимо того, что запасы ископаемого топлива постепенно истощаются, главным недостатком процесса извлечения энергии этим способом является негативное воздействие на окружающую среду. Горение сопровождается образованием тяжелых твердых частиц и высоким выбросом углекислого газа.

Каменный уголь более качественный, но многие электростанции используют бурый, который добывать намного дешевле. Количество получаемой энергии в расчете на 1 кг веса бурого угля по сравнению с каменным примерно в 3 раза ниже (первого – 3 кВт⋅ч на кг, второго – 9 кВт⋅ч на кг). Поэтому на электростанциях, работающих на буром угле, необходимо сжигать тройную массу на единицу энергии.

Для уменьшения ущерба, наносимого окружающей среде, ТЭС имеют высотные дымоходы, которые рассеивают эти частицы и локально уменьшают их вредное влияние. Кроме того, на электростанциях устанавливаются дымоходные фильтры.

КПД тепловых электростанций

Эффективность тепловых электростанций ограничена. Наибольший КПД – 60%. Он достигается на парогазовых электростанциях, а на современных угольных – ниже 50%, на старых – всего 40%. Указанные показатели эффективности применимы к работе при полной нагрузке. При частичной КПД может значительно снизиться.

Практически все крупные электростанции, за исключением ГЭС, являются тепловыми, во многих странах они производят большую часть электроэнергии. Из-за их ограниченной эффективности образуется значительное количество отработанного тепла, использование которого на месте возможно только в малом объеме. Поэтому оно выбрасывается в атмосферу через градирни, иногда через охлаждающую воду в реки.

Существуют ТЭС только для выработки электроэнергии и ТЭЦ – теплоэлектроцентраль. Последние предназначены также для использования вырабатываемого тепла посредством его транспортировки в отопительные системы и трубопроводы горячего водоснабжения. КПД ТЭЦ намного выше, он может превышать 70%.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

  1. Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 — 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.
  2. Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 — 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Тепловые электрические станции – ТЭС

На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.

Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.

Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.

Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.

Пятерка самых мощных теплоэлектростанций мира

Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.

Рабочий цикл ТЭС подразумевает постоянный подвод тепла. Тепло получается при сжигании топлива. В нашей стране большое количество ТЭС ( ТЭЦ , ГРЭС ), но все они используют 3-4 вида топлива. Это природный газ, уголь (каменный и бурый), мазут и торф. Самые распространенные виды топлива — это газ и уголь.

Атомная энергетика сегодня

По разным данным, ядерная энергетика сегодня дает от 10 до 15% электроэнергии во всем мире. Атомную энергию использует 31 страна. Наибольшее количество исследований в области электроэнергетики ведутся именно по использованию ядерной энергии. Логично предположить, что преимущества АЭС явно велики, если из всех видов добычи электроэнергии развивают именно этот.

В то же время, есть страны, которые отказываются от использования ядерной энергетики, закрывают все имеющиеся атомные станции, к примеру, Италия. На территории Австралии и Океании АЭС не существовало и не существует в принципе. Австрия, Куба, Ливия, КНДР и Польша остановили разработки АЭС и временно отказались от планов по созданию атомных станций. Эти страны не обращают внимания на достоинства АЭС и отказываются от их установки в первую очередь по соображениям безопасности и больших затрат на строительство и эксплуатацию атомных станций.

Лидерами в атомной энергетике сегодня являются США, Франция, Япония и Россия. Именно они по достоинству оценили преимущества АЭС и стали внедрять атомную энергетику в свои страны. Наибольшее количество строящихся проектов АЭС сегодня принадлежат Китайской Народной Республике. Еще около 50ти стран активно работают над внедрением ядерной энергетики.

Как и все способы добычи электроэнергии имеет АЭС преимущества и недостатки. Говоря про преимущества АЭС нужно отметить экологичность производства, отказ от использования органического топлива и удобство в транспортировке необходимого горючего. Рассмотрим все подробнее.

Графики электрических нагрузок

Графики нагрузок, характеризующие работу как потребителей, так и источников электроэнергии, представляют собой диаграммы в прямоугольных осях координат, где по оси абсцисс откладывается время, в течение которого показывается изменение нагрузки, а по оси ординат – соответствующие данному моменту времени нагрузки, обычно в виде активной, реактивной или полной (кажущейся) мощностей. Чаще всего строят суточные, месячные, сезонные и годовые графики нагрузок.

При построении так называемых ступенчатых графиков нагрузок (рис. 4) считают, что нагрузка в интервале между двумя измерениями остается постоянной. Исходными для построения годового графика нагрузки по продолжительности являются суточные графики нагрузки для характерных зимних и летних суток. График строится по 12 точкам, соответствующим наибольшим суточным нагрузкам каждого месяца.

Площадь годового графика нагрузки по продолжительности представляет собой в определенном масштабе потребляемую (отдаваемую) за год энергию (кВт·ч), а площадь суточных графиков – энергию, потребляемую (отдаваемую) за сутки (кВт·ч).

Годовые графики нагрузки дают возможность определить оптимальное количество и мощность агрегатов электростанции или трансформаторов подстанции, уточнить режимы их работы, выявить возможные сроки их планово-предупредительных ремонтов.

Графики также дают возможность приближенно рассчитать годовую потребность в электроэнергии, годовые потери в сетях, трансформаторах и других элементах установки. По графикам нагрузки определяется ряд техникоэкономических показателей для действующих или вновь проектируемых электроустановок, таких, как средняя (среднесуточная, среднемесячная или среднегодовая) нагрузка электростанции или подстанции, число часов использования установленной мощности, коэффициент заполнения графика, коэффициент использования установленной мощности.

Рис. 4. Суточный ступенчатый график активной нагрузки

Графики нагрузки предназначены для следующих целей:

  • для определения времени пуска и остановки агрегатов, включения и отключения трансформаторов;
  • определения количества выработанной (потребленной) электроэнергии, расхода топлива и воды;
  • ведения экономичного режима электроустановки;
  • планирования сроков ремонтов оборудования;
  • проектирования новых и расширения действующих электроустановок;
  • проектирования новых и развития существующих энергосистем, их узлов нагрузки и отдельных потребителей электроэнергии.

Чем равномернее нагрузка генераторов, тем лучше условия их работы, поэтому возникает так называемая проблема регулирования графиков нагрузки, проблема их выравнивания. При этом следует иметь в виду, что целесообразно по возможности более полно использовать установленную мощность электростанций.

Для регулирования графиков нагрузки используют различные способы, в том числе:

  • подключение сезонных потребителей;
  • подключение нагрузки ночью;
  • увеличение числа рабочих смен;
  • смещение начала работы смен и начала работы предприятий;
  • разнос выходных дней;
  • введение платы как за активную, так и за реактивную энергию;
  • уменьшение перетоков реактивной мощности по сети;
  • объединение районных энергосистем.

Суточный график нужен для оперативного регулирования и планирования балансов электроэнергии и мощности до нескольких суток.

Недельный:

  • определение готовности работы оборудования.
  • управление режимами с учетом недельной неравномерности;
  • проведение текущих осмотров ревизий текущих ремонтов;
  • регулирование водно-энергетических режимов ГЭС.

Годовой:

  • планирование хозяйств деятельности;
  • планирование капитального ремонта;
  • планирование обеспечения топливом;
  • водно-энергетическое регулирование ресурсов водохранилища ГЭС;
  • планирование товарно-ценовой деятельности.

Просмотров:
14 295

Принцип работы тепловой электростанции

Основной принцип работы тепловой электростанции заключается в производстве тепловой энергии из органического топлива, которая в дальнейшем используется для выработки электрического тока.

Понятия ТЭС и ТЭЦ существенно различаются между собой. Первые установки относятся к так называемым чистым электростанциям, вырабатывающим только электрический ток. Каждая из них известна еще и как конденсационная электростанция – КЭС. ТЭЦ расшифровывается как теплоэлектроцентраль и является разновидностью ТЭС. Данные установки не только генерируют электричество, но и являются тепловыми, то есть дают тепло в системы отопления и горячего водоснабжения. Такое комбинированное использование требует специальных паровых турбин с противодавлением или системой промежуточного отбора пара.

Несмотря на разнообразие конструкций, работа всех ТЭС осуществляется по общей схеме. В котел постоянно подается топливо в виде угля, газа, торфа, мазута или горючих сланцев. На многих электростанциях используется заранее приготовленная угольная пыль. Вместе с топливом поступает воздух в подогретом виде, выполняющий функцию окислителя.

В процессе горения топлива создается тепло, нагревающее воду в паровом котле. Происходит образование насыщенного пара, подаваемого в паровую турбину через паропровод. Далее тепловая энергия становится механической.

Вал и остальные движущиеся части турбины связаны между собой и представляют единое целое. Струя пара под высоким давлением и при высокой температуре выходит из сопел и воздействует на лопатки турбины. Закрепленные на диске, они начинают вращаться и приводят в движение вал, соединенный с генератором. В результате вращения происходит преобразование механической энергии в электрический ток.

Пройдя через паровую турбину, пар снижает свою температуру и давление. Далее он попадает в конденсатор и прокачивается по трубкам, охлаждаемым водой. Здесь пар окончательно превращается в воду и поступает в деаэратор для очистки от растворенных газов. Очищенная вода с помощью насоса подается в котельную установку через подогреватель.

Как работает тепловая электростанция

В основе работы тепловой электростанции лежат свойства пара, которыми он обладает. Вода, превращенная в пар, несет в себе большое количество энергии. Именно эту энергию направляют на вращение турбин, которые должны вырабатывать электричество.

Как правило, на тепловых электростанциях в качестве топлива используется уголь. Выбор этого топлива очень логичен, ведь именно угля на нашей планете еще очень и очень много. В отличии от нефти и газа, которых пока хватает, но уже маячит перспектива истощения их запасов.

Калининградская ТЭЦ.

Выше я сказал, что 60 процентов получаемой в мире энергии вырабатывается ТЭС. Если говорить о станциях, которые работают на угле, их доля достигает примерно 25 процентов. Это лишний раз подтверждает, что угля у нас много.

Для работы станции его заранее измельчают. Это может делаться в рамках станционного комплекса, но проще это сделать где-то в другом месте.

Измельченный уголь попадает на станцию на начальном этапе производства энергии. При его сжигании разогревается котел, в который и попадает вода. Температура котла может меняться, но его главной задачей является максимальный нагрев пара. Сам пар получается из воды, которая так же поступает на станцию.

Когда вода нагревается в котле, она в виде пара попадает на отдельный блок генератора, где под большим давлением раскручивает турбины. Именно эти турбины и вырабатывают энергию.

Примерно так выглядят принцип работы тепловых электростанций.

Казалось бы, что на этом надо заканчивать, ”заправлять” в котлы новый уголь и подливать воду, но не все так просто. На этапе турбины у потерявшего свою силу и остывшего пара есть два пути. Первый — в циклическую систему повторного использования, второй — в магистраль теплоснабжения. Нагревать воду для отопления отдельно нет смысла. Куда проще отобрать ее после того, как она приняла участие в выработке электричества. Так получается намного эффективнее.

Остывшая вода попадает в градирни, где охлаждается и очищается от примесей серы и других веществ, которыми она насытилась. Охлаждение может показаться нелогичным, ведь это оборотная вода и ее все равно надо будет снова нагревать, но технологически охлаждение очень оправдано, ведь какое-то оборудование просто не может работать с горячей водой.

Принцип работы градирни.

После этого вода или проходит через системы предварительного подогрева, или сразу поступает в котлы. Примерно так и выглядит схема работы тепловой электростанции. Есть, конечно, тонкости вроде резервуаров, отстойников, каналов, змеевиков и прочего оборудования, но оно разнится от станции к станции и останавливаться на нем подробно не стоит. Такое оборудование не влияет на принцип работы электростанции, который я описал.

Так выглядит турбина, когда она открыта и находится на обслуживании.

Есть и другие электростанции, которые работают на мазуте, газе и других видах горючих материалов, извлекаемых из недр планеты, но принцип их работы примерно один и тот же — горячий водяной пар крутит турбину, а топливо используется для получения этого пара.

Другие виды топлива для ТЭС

Помимо традиционных видов топлива тепловые электростанции применяют в своей работе и другие источники энергии. Одним из таких энергоресурсов является мазут, который использовался на многих электростанциях во второй половине 20-го века.

В современных условиях цена продуктов нефтепереработки существенно увеличилась, поэтому мазут перестал быть основным топливом. Его частично используют угольные электростанции для растопки. Эксплуатационные качества мазута аналогичны с природным газом, однако при его сжигании в большом количестве выделяется оксид серы, загрязняющий окружающую среду.

В 20-м веке некоторые ТЭС работали на торфе. В настоящее время этот ресурс практически не используется из-за низкой эффективности по сравнению с газом и углем. Установки на дизельном топливе применяются на небольших объектах, где не требуются значительные объемы электроэнергии. В основном, они предназначены для удаленных районов, расположенных на значительном расстоянии от сетей централизованного электроснабжения.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

В приоритете – тепло

Теплоэнергоцентрали (ТЭЦ) – это еще один тип ТЭС, но это не конденсационная, а теплофикационная станция.  ТЭЦ, главным образом, производят тепло – в виде технологического пара и горячей воды (в том числе для горячего водоснабжения и отопления жилых и промышленных объектов). Поэтому ТЭЦ являются ключевым элементом в централизованных системах теплоснабжения в городах, по уровню проникновения которых Россия является одним из мировых лидеров. Средние и малые ТЭЦ являются также незаменимыми спутниками крупных промышленных предприятий. Ключевая черта ТЭЦ – когенерация: одновременное производство тепла и электричества . Это и эффективнее, и выгоднее выработки, например, только электроэнергии (как на ГРЭС) или только тепла (как на котельных). Поэтому в СССР в свое время и сделали ставку на повсеместное развитие теплофицикации.

Принципиальное отличие ТЭЦ от ГРЭС, при том что все это котлотурбинные и паротурбинные электростанции — разные типы турбин. На теплоэлектроцентралях ставят теплофикационные турбины марки «Т», отличие которых от конденсационных турбин типа «К» (которые работают на ГРЭС) – наличие регулируемых отборов пара. В дальнейшем он направляется, например, к подогревателям сетевой воды, откуда она идет в батареи квартир или в краны с горячей водой. Наибольшее распространение в нашей стране исторически получили турбины Т-100, так называемые «сотки». Но работают на ТЭЦ и противодавленческие турбины типа «Р», которые производят технологический пар (у них нет конденсатора и пар, после того, как выработал электроэнергию в проточной части, идет напрямую промышленному потребителю). Бывают и турбины типа «ПТ», которые могут работать и на промышленность, и на теплофикацию.

В турбинах типа «К» процесс расширения пара в проточной части заканчивается его кондесацией (что позволяет получать на одной установке большую мощность – до 1,6 ГВт и более).

В отопительный сезон ТЭЦ работают по так называемому «тепловому графику» – поддерживают температуру сетевой воды в магистрали в зависимости от температуры наружного воздуха. В этом режиме ТЭЦ могут нести и базовую нагрузку по электроэнергии, демонстрируя, кстати, очень высокие коэффициенты использования установленной мощности (КИУМ). По электрическому графику ТЭЦ обычно работают в теплые месяцы года, когда отборы на теплофикацию с турбин отключаются. ГРЭС же работают исключительно по электрическому графику.

Нетрудно догадаться, что ТЭЦ в России гораздо больше ГРЭС – и все они, как правило, сильно различаются по мощности. Вариантов их работы также великое множество. Некоторые ТЭЦ, например, работают как ГРЭС — такова, к примеру, ТЭЦ-10 компании «Иркутскэнерго». Другие функционируют в тесной спайке с промышленными предприятиями – и потому не снижают свою мощность даже в летний период. Например, Казанская ТЭЦ-3 ТГК-16 снабжает паром гигант химиндустрии – «Казаньоргсинтез» (обе компании входят в Группу ТАИФ). А Ново-Кемеровская ТЭЦ СГК генерирует пар для нужд КАО «Азот». Некоторые станции обеспечивают теплом и горячей водой преимущественно население – например, все четыре ТЭЦ в Новосибирске с 1990-х практически прекратили производство технологического пара.

Случается, что теплоэлектроцентрали вообще не производят электрической энергии – хотя таких сейчас и меньшинство. Связано это с тем, что в отличие от гигакалорий, стоимость которых жестко регулируются государством, киловатты в России являются рыночным товаром. В этих условиях даже те ТЭЦ, что ранее не работали на оптовый рынок электроэнергии и мощности, постарались на него выйти. В структуре СГК, например, такой путь прошла Красноярская ТЭЦ-3, до марта 2012 года вырабатывавшая только тепловую энергию. Но с 1 марта того года на ней ввели в строй первый угольный энергоблок в России на 208 МВт, построенный в рамках ДПМ. С тех пор эта станция вообще стала образцово-показательной в СГК по энергоэффективности и экологичности.

Крупнейшие ТЭЦ в России работают на газе и находятся под крылом «Мосэнерго». Самой мощной, вероятно, можно считать ТЭЦ-26, расположенную в московском районе Бирюлево Западное – по крайней мере, по показателю электрической мощности 1841 МВт она опережает все другие ТЭЦ страны. Эта электростанция обеспечивает централизованное теплоснабжение промышленных предприятий, общественных и жилых зданий с населением более 2 млн человек в районах Чертаново, Ясенево, Бирюлево и Марьино. Тепловая мощность у этой ТЭЦ хоть и высока (4214 Гкал/час), но не является рекордной. У ТЭЦ-21 того же «Мосэнерго» мощность по теплу выше – 4918 Гкал/час, хотя по электроэнергии она немногим уступает «коллеге» (1,76 ГВт).

Самые мощные ТЭС

В настоящее время лидером тепловой энергетики по праву считается тепловая электростанция Туокетуо, находящаяся в Китае в провинции Внутренняя Монголия. До недавних пор она являлась лишь третьей в мире, уступая по мощности ТЭС, расположенным в Тайчжуне и Сургуте. В результате проведенной реконструкции в 2017 году добавились два энергоблока по 660 Мвт каждый, после чего общая мощность станции достигла 6720 мегаватт. После этого Сургутская ГРЭС стала занимать 3-е место в мире и 1-е – в России.

В российской Энергосистеме доля тепловых электростанций составляет около 70%, а общее количество в натуральных цифрах – 358 единиц. Самые крупные ТЭС расположены возле крупных месторождений полезных ископаемых, используемых в качестве топлива. Установки, применяющие мазут, привязаны к крупным нефтеперерабатывающим предприятиям.

Крупнейшей российской ТЭС является Сургутская, производительность которой составляет 5600 МВт. На карте географическое положение объекта определяется на примерно одинаковом расстоянии от Нефтеюганска и Ханты-Мансийска.

Строительство объекта началось в 1979 году, а в 1985 году был введен в эксплуатацию 1-й энергоблок. Далее за 3 года в строй вступили все оставшиеся энергоблоки, производительностью 800 МВт. Работа станции осуществляется на попутном газе, образованном в местах разрабатываемых газовых месторождений. Такой газ должен утилизироваться, однако он превратился в энергетический ресурс. К настоящему времени построены еще 2 энергоблока по 400 МВт, что позволило вывести станцию на проектную мощность.

Следует отметить еще одну крупную российскую ГРЭС – Рефтинскую. Она работает на каменном угле, а производительность составляет 3800 мегаватт. Объект расположен примерно в 100 км от Екатеринбурга. Строительство велось с 1963 по 1980 годы, в течение всего периода энергоблоки вводились в строй поэтапно.

Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.

Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.

И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.

Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред окружающей среде. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.

АЭС: преимущества и недостатки

Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.

«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.

По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.

Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.

Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.

Типы электростанций

Электростанции бывают различных типов, наиболее распространенными из которых являются:

  • Тепловые
  • Гидравлические
  • Атомные

Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.

Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов — это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Климат в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: