Пластинчатые теплообменники
В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.
Исследовательские расчеты
Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.
Механизмы теплопередачи в расчете теплообменников
Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.
При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.
При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.
Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.
Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.
При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.
При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:.
Если проинтегрировать показатели температурных изменений по толщине стенки, получится
Исход из этого получается, что температура внутри стенки падает по закону прямой линии.
Конвекционный механизм передачи тепла: расчеты
Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона
В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:
- физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
- условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
- пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).
Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле
Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.
Это вычисляется по формуле .
Коэффициент теплоотдачи в расчете теплообменников
В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.
Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.
Соответственно для проведения расчетов используется три формулы:
В результате совместного решения уравнений получаем
Величина
и есть коэффициент теплопередачи.
Расчет средней разности температур
Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).
При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:
В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения.
Какие характеристики должны иметь инструменты
Если ваша цель – сделать теплообменник для котельной или теплового пункта, лучше всего ориентироваться на выбор пластинчатых разборных устройств или же сделать их своими руками по чертежу. Схема теплообменника указана на фото ниже:
Почему именно пластинчатые разборные устройства? Дело в том, что жидкость (в данном случае это вода) в тепловых и водопроводных сетях не имеет особо хороших качеств, что может привести к образованию накипи и других серьезных отложений в системе. Кстати, ремонт теплообменников заключается именно в очистке каналов от таких веществ. Также в ремонте меняются «калачи» и заделываются трещины в дырах (при необходимости).
Конечно, конструкция таких теплообменников не позволяет снизить уровень возникновения накипи к нулю. Но тогда в чем же их преимущества? Основной их плюс заключается в простой разборке. Конструкция пластинчатых разборных теплообменников настолько проста, что производить очистку накипи можно практически каждый день. Таким образом, ремонт теплообменников разборного типа производится в максимально сжатые сроки. Здесь же следует отметить еще одно преимущество – ремонтопригодность устройства, ведь заменить пластины в нем можно без применения специальной оснастки и инструментов.
20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.
9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.
Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.
Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.
Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.
Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.
Главная > Отопление > Теплообменник для твердотопливного котла. Своими руками.
Теплообменники под разные задачи
При подборе важно знать, где будет устанавливаться прибор. Их используют в системах отопления, горячего водоснабжения, вентиляции, при монтаже систем охлаждения и подогрева бассейнов
От назначения изделия будут зависеть требования к его свойствам.
Для бассейна
Выбирая теплообменное оборудование для бассейна, рассматривают параметры:
- Тип нагревательного устройства: трубчатый или пластинчатый.
- Пропускная способность. Показывает, через сколько времени весь объем бассейна будет прокачан через теплообменник.
- Материал трубок или пластин. Для пресной воды выбирают нержавеющую сталь, для резервуаров с морской — титан.
- Тип нагревателя, к которому будет подключаться аппарат: газовый или электрокотел.
- Тепловая мощность. Важнейший показатель при выборе. Если у прибора будет недостаточная мощность, то вода в бассейне не прогреется до нужной температуры.
В основном для бассейнов используют один из двух видов устройств:
Пластинчатые, потому что они проще других в обслуживании, обладают более высоким коэффициентом полезного действия и малыми размерами. В пластинчатый разборный теплообменник всегда можно добавить пластины, увеличив его мощность.
Кожухотрубные, так как они обладают большей площадью теплообмена, не создают гидравлических помех для прохождения нагреваемой жидкости, меньше засоряются в процессе эксплуатации.
Для отопления
При проектировании системы отопления потребуется знать, какой мощности нужен источник тепла, а также температуру подачи теплоносителя.
Исходные данные нужно брать для самого холодного периода, когда необходимы максимально высокие температуры и самое большое теплопотребление.
Дополнительно стоит знать:
- Жилое или нежилое помещение будет отапливаться. Нагрузку определяют исходя из площади и объема здания, а также учитывают теплопотери здания через все ограждающие конструкции.
- Качество воды. Присутствуют ли в ней загрязнения, которые оседают на поверхности пластин и ухудшают теплообмен.
- Источник обогрева будет свой или тепловые сети.
- Есть ли планы в дальнейшем увеличивать мощность теплообменника. Например, планируется достройка помещения и площадь увеличится.
Для систем отопления подходящим выбором станут пластинчатые паяные теплообменники или разборные, чтобы иметь возможность нарастить мощность. В качестве рабочих теплоносителей используют воду и гликольные смеси.
Для горячего водоснабжения
В случае с горячим водоснабжением источником тепла обычно является теплоноситель системы отопления, а нагреваемой средой — холодная вода.
При подборе теплообменника для системы ГВС, нужно знать:
- Необходимую температуру подачи.
- Объем жидкости, который придется нагревать.
- Тип помещения, где будет установлен прибор. Это могут быть столовые, рестораны, душевые в гостиницах и спортзалах, частные дома и многоквартирные комплексы.
- Количество точек водоразбора — это количество мест, где необходима горячая вода. Например, в обычной однокомнатной квартире их две: кухня и ванная.
- Если в качестве источника тепла используется центральное теплоснабжение, то учесть его «летний» режим работы.
- Рассчитывать пиковые нагрузки работы ГВС. Например, в многоквартирных домах утром и вечером нагрузка увеличивается.
По итогу в выборе часто склоняются к разборным пластинчатым теплообменникам потому что:
- Их легче остальных промывать. Из-за примесей в воде со временем на пластинах откладываются загрязнения, ухудшающие теплопередачу. В итоге прибор может даже выйти из строя. Поэтому теплообменник необходимо промывать не реже одного раза в год.
- Их легко ремонтировать. Для восстановления функционирования устройства достаточно заменить неисправную пластину.
- Резиновые прокладки аппарата предотвращают утечку при любом его повреждении. Они устойчивы к перепадам давления и температуры.
Для бани
Вариантом теплообменного прибора для бани может стать змеевик из алюминия или меди. Прибор монтируется в банную печь рядом с каменкой или сверху на топку. В таком случае вода будет греться непосредственно от жара из топки, а печь работает и для обогрева, и для горячего водоснабжения. Недостатком такого способа является закипание — когда печь еще не прогрелась, а вода в баке уже начинает кипеть.
Также есть трудности с обслуживанием и заменой частей этого вида теплообменника. На стенках встроенного устройства накипь собирается быстрее, и чем толще ее слой, тем меньше теплопроводность материала — передача тепла происходит хуже. Тогда приходит время чистить изделие, а для его замены придется разобрать печь.
Расчёт теплообменника для системы отопления
Рассчитывая пластинчатый теплообменник пренебрегают незначительными потерями с корпуса считая, что всё тепло отданное теплоносителем в греющем контуре переходит к теплоносителю в нагреваемом контуре, поэтому в расчёте всегда должен соблюдаться тепловой баланс.
Проверить правильность теплового баланса между греющим и нагреваемым контуром можно по простой формуле.
Q = 1.163 · G[т/ч] · dt
Полученные значения количества тепла после подстановки параметров греющего и нагреваемого контуров должны быть равны.
При расчёте пластинчатого теплообменника для системы отопления исходными являются величины тепловой мощности системы отопления и расчётный температурный график системы отопления и источника тепла. В результате расчёта определят расход теплоносителя в греющем и нагреваемом контурах.
Основной особенностью расчёта теплообменника для системы отопления является то, что теплообменный аппарат должен обеспечивать корректную работу как на максимальном, так и на переходном режимах эксплуатации.
Максимальным режимом при подборе теплообменника считается режим с расчётной для системы отопления температурой наружного воздуха (для Киева это -22°C). В расчётном режиме от источника тепла приходит теплоноситель с максимальной температурой на пике температурного графика (если источником является тепловая сеть, то это может быть 120/70°C, то есть в подаче 120°C, а в обрате 70 °C, а в автономной котельной может быть принят график 95/70 °C), так и в систему отопления вода поступает с максимальной температурой на пике температурного графика например 90/70°C или 80/60 °C, в зависимости от того какой принят при её расчёте.
Переходным режимом считается режим со средней температурой наружного воздуха за отопительный период в местности где предполагается установка теплообменника (для Киева это -0.1°C). Температуры теплоносителя в переходном режиме на вводе источника тепла и на входе в систему отопления соответственно ниже и определяются по температурному графику при соответствующей температуре наружного воздуха.
Для жителей Украины доступна опция выбора города, при этом температуры наружного воздуха для расчётного и переходного режимов будут выбраны автоматически по ДСТУ-Н Б В.1.1-27:2010 «Строительная климатология», а для жителей других стран придётся ввести температуры вручную.
Несколько распространённых ошибок при заполнении формы расчёта
1 Температура греющей воды на выходе из теплообменника должна быть больше температуры нагреваемой воды на входе в него на всех режимах эксплуатации. В противном случае теплообменный аппарат получится бесконечно больших размеров.
Это означает что если у вас температурный график работы источника тепла составляет 130/70°C, а расчётный температурный график системы отопления 90/70°C, то либо следует принять более высокую температуру греющей воды на выходе из теплообменника, например 130/80°C, либо принять более низкий температурный график для системы отопления например 80/60°C. Повышение температуры в обратном трубопроводе источника тепла при независимом подключении системы отопления на 5-10°C разрешается строительными нормами (ДБН).
2 Не задавайте допустимые потери давления в теплообменнике ниже 10кПа (1м.вод.ст), если это не принципиальное условие. Чем меньше вы задали допустимые потери давления, тем большим будет теплообменный аппарат и соответственно большей его цена.
Воздушные теплообменники
Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. «вентилятор» + «змеевик») во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.
Разновидности теплообменников для ГВС-систем
Сегодня их множество, однако среди всех самыми популярными для использования в быту являются два: это системы кожухотрубного и пластинчатого типа. Следует отметить, что кожухотрубные системы почти исчезли с рынков из-за низких показателей КПД и больших размеров.
Теплообменник пластинчатого типа для ГВС — это несколько гофрированных пластинок, расположенных на жесткой станине. Они идентичны друг другу по конструкциям и габаритам, однако следуют друг за другом, но по принципу зеркального отражения, и делятся между собой специализированными прокладками. Прокладки могут быть как стальными, так и резиновыми.
Из-за чередования пластин по парам появляются такие полости, которые при работе заполняются или жидкостью для нагрева, или носителем тепла. Именно за счет такой конструкции и принципа действия смещение сред между собой исключается полностью.
Посредством направляющих каналов жидкости в теплообменнике двигаются друг к другу, заполняя четные полости, после чего выходят из конструкции, получив или отдав некоторую часть энергии тепла.
Схема и принцип работы пластинчатого теплообменника ГВС
Чем больше пластин по количеству и размеру будет в одном теплообменнике, тем большую площадь он сможет охватить, и тем больше будет его производительность и полезное действие при работе.
Для ряда моделей на балке направления между запорной плитой и станиной есть пространство. Его достаточно для того, чтобы установить пару-тройку плит такого же типа и размера. В таком случае плитки, устанавливаемые дополнительно, будут монтироваться парами.
Все теплообменники пластинчатого типа можно поделить на несколько категорий:
- 1. Паяные, то есть неразборные и имеющие герметичный основной корпус.
- 2. Разборные, то есть состоящие из нескольких отдельных плиток.
Главное преимущество и плюс работы с разборными конструкциями заключается в том, что их можно дорабатывать, модернизировать и улучшать, от есть удалять лишние или же добавлять новые пластинки. Что же касается конструкций паяных, то у них такой функции нет.
Однако более популярными сегодня являются пластинчатые паяные системы обеспечения теплом, и популярность их основана на отсутствии зажимных элементов. Благодаря этому они отличаются компактными размерами, которые никак не влияют на полезность и работоспособность.
Пример расчета теплообменника
Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера – эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость – жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой – тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.
Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:
Q1 = 14 500 * (14 – 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и
Q2 = 18 125 * (12 – * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по второй стороне.
Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет. Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м 2 ]), а ΔТср.лог
– среднелогарифмический температурный напор, считаемый по формуле (7.3):
Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м 2 ]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):
ΔТ ср.лог. = (2 – 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;
F то = 84321 / 6350 * 1,4428 = 9,2 м 2 .
В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м 3 ], η – динамическая вязкость, [Н*с/м 2 ], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала .
По таблице ищем необходимое нам значение критерия Прандтля и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.
Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.
В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.
Механизмы теплопередачи в расчете теплообменников
Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.
При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.
Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье
Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.
Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.
Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.
Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:
После выполнения некоторых математических операций получаем следующую формулу
Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.
Как рассчитать мощность теплообменника?
Расчет мощности теплообменника проводится в 2 этапа (рассмотрим на примере бассейна).
Первый этап подразумевает дополнительно расчет объема, а второй – производство вычислений по формуле:
Р = 1,16 x (Т1/Т2)/t x V, где:
Р — мощность конкретного теплообменника;
1,16 — примененный коэффициент;
Т1 — конечная температура для нагрева;
Т2 — температура воды (скажем, водопроводная должна нагреться не менее, чем на 15 С);
t — время, необходимое для нагрева (где-то 3-4 часа в нашем случае);
V — объем самого бассейна.
Произведя все предусмотренные действия, несложно определить требуемую мощность теплообменника, который нужен, чтобы вода, находящаяся в бассейне, грелась до необходимой температуры за какой-то определенный временной промежуток.
Далее требуется найти (по специальным каталогам, например) подходящий под произведенные расчеты теплообменник.
Перед реализацией обсуждаются возможности устройства. Затем сравниваются все показатели со значениями, указанными в технической документации к теплообменнику.
Так, в данном конкретном случае (с бассейном) ориентиром послужат параметры насоса для циркуляции воды.
Правильный расчет теплообменника под любые задачи могут выполнить специалисты нашей компании. Звоните в ООО «Сервис-ПТО» по телефонам,, и мы ответим на любые вопросы!