Свойства полимеров: теплопроводность и плотность пластиков и пластмасс
В таблице представлены физические свойства полимеров (пластмасс и пластика) при отрицательной и положительной температуре, в интервале от -200 до 280°С. Свойства пластиков даны при нормальном атмосферном давлении.
Таблица свойств следующих полимеров, пластиков и пластмасс: акриловая смола, асбоволокниты типа КФ-3, асботекстолиты, асборезит, волокниты, гетинаксы, гетинакс тонкий, древеснослоистые пластики ДСП, карболит: крезольный, литой, фенольный, каучук, силиконовый, с наполнителем, кремнийорганический полимер КМ-9, кремнийорганическая смола К-55, К-18-2, К-21-22. Лак: алкидный на высыхающих маслах ФВ-2, пентафталевый №170, кремнийорганический КО-08, полиэфирный ПЭ-939, лак битумный №177, мипора, пенопласты, поропласты, полиамидная смола 54, полиамид 66 (полиамид 6, капрон, полиамид 66, нейлон, найлон), полиамид 68, поликапроамид, полиизобутен, поливинилбутираль, поливиниловый спирт, полиизобутилен, полиизопропилметакрилат, поликарбонат, полипропилен атактический, изоатактический, полиметилметакрилат, полиорганосилоксановые жидкости: ПМС — 1,5, ПМС — 5, 10, 50, 100, 200, 400, 476, 700, 1000, ПЭС — 1, 2, 3, 4, 5, ПФМС — 2/5 Л, 4, ФМ — 1322, ПФМС — 6, полистирол ударопрочный УПП — 1 ППС, политетрафторэтилен, полихлортрифторэтилен, полиуретан ПУ — 1, ПВХ пленка, кабельный, пластифицированный, жесткий, с кварцевым наполнителем, линолеум с наполнителем, хлорированный, полихлорвинил с бутилбензилфталатом, палатиновое масло АН, полиэтилен ВД, П2020, ПЭ — 500, линейный, НД, П4045К, полиэтилентерефталат, полиэтиленгликоль, полиэтиленсилоксановая жидкость №5, 7, резит, резина пористая, стеклопластик полиэфирный на основе жесткого и мягкого стеклохолста, стекловолокнит типа АГ — 4, КАСТ, стеклопластик полиэфирный на основе стеклоткани, наполненной минеральным наполнителем 8% ZnO в смоле ПН-1, текстолит, фибролит, фенолформальдегидная смола, аррезин — Б, 101К, Р-21, совмещенный фенолит, фенольная литая смола, фурфурил — фенолформальдегидная смола Ф-10, фурановый полимер ФГ-2, эмаль (кремнийорганическая): КО-84, КО-811, эпоксидная смола Э-33, Э-41, ЭД-5, ТФЭ-9, ПН-1, этрол ацетатцеллюлозный, этилцеллюлозный.
Даны следующие теплофизические свойства полимеров и пластмасс:
- плотность пластика, кг/м3;
- коэффициент теплопроводности, Вт/(м·град);
- коэффициент температуропроводности, м2/с;
- удельная (массовая) теплоемкость, кДж/(кг·град).
Следует особо отметить значения плотности пластмассы в таблице. Ее диапазон находится в пределах от 16 кг/м3 (для теплоизоляционных пенистых пластмасс — таких, как мипора) до 2280 кг/м3 (для тяжелого линолеума с наполнителем).
Используемые виды
теплопроводность кирпичной стены
Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори
Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены
В настоящее время активно распространены несколько видов. Среди них выделяют следующие:
- белый (силикатного типа);
- (глиняный).
Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:
- В составе керамического лежит глина и различные добавки.
- Силикатный получают из кварцевого песка, извести и воды.
Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.
Прочность полнотелого кирпича
Полнотелый кирпич соответствует стандартным маркам прочности. Прочность кирпича обозначается соответствующей маркой, например М100, где М- это марка, а 100 – это нагрузка в килограммах которую может выдержать полнотелый кирпич при давлении на 1 см квадратный, то есть при сжатии. Полнотелый керамический кирпич бывает следующих марок плотности М-75, М-100, М-125, М-150, М-175, М-200, М-250, М-300. Марки 75-100 используют для кладки стен двух и трех этажных домов, прочность такого кирпича позволяет выдерживать вес всего здания. Марки от 125 до 200 уже можно смело использовать для сооружения фундаментов и цокольных этажей. Полнотелый кирпич М200 и М300 используется даже для устройства фундаментов многоэтажных домов.
Зависимость от температуры использования
На технические показатели кирпича большое влияние оказывает температурный режим:
- Трепельный. При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
- Силикатный. Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
- Саманный. При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
- Красный. Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).
- Желтый. Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
- Строительный. При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
- Облицовочный. Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).
Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).
Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.
Теплофизические свойства огнеупорных изделий и керамики
В таблице даны теплофизические свойства огнеупорных изделий и материалов в зависимости от температуры.
Также приведено удельное электрическое сопротивление огнеупорных материалов при температуре 800, 1200 и 1600°С.
В таблице указаны следующие свойства огнеупоров:
- плотность огнеупоров при 20°С с порами и без пор, т/м3;
- удельная теплоемкость, кДж/(кг·град);
- теплопроводность, Вт/(м·град);
- удельное электрическое сопротивление, Ом·см.
Свойства представлены для следующих огнеупорных изделий и керамики: графитовые изделия, динасовый кирпич, карборундовые изделия (карбофракс), корундовые (алундовые) изделия, рекристаллизованный корунд, магнезитовый кирпич, изделия из плавленного муллита, плавленный магнезитовый кирпич, окись бериллия, тория, полукислый огнеупорный кирпич, строительный (красный) кирпич, силлиманитовые и муллитовые изделия, угольные изделия, хромитовый кирпич, хромомагнезитовый кирпич, термостойкий хромомагнезитовый кирпич, циркониевые и цирконовые изделия, шамотный кирпич.
Примечание: температура в формулы для расчета теплопроводности и удельной теплоемкости керамики и огнеупоров подставляется в градусах Цельсия.
- Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967 — 474 с.
- Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
Рождение камня
Все прекрасно понимают, что твердые горные породы не появились из воздуха в одно мгновение. Для их образования, как и для зарождения всего живого на планете, потребовались миллионы лет эволюции и особые условия, созданные самой природой.
Любой камень — это затвердевшая магма доисторических вулканов, извергавшихся повсеместно на планете миллиарды лет назад, когда она еще была молода и больше напоминала поверхность нынешней Венеры. И сам процесс, и условия, и влияние множества внешних факторов и постоянно меняющихся климатических условий — все это напрямую повлияло не только на рождение камня, но и на образование его разновидностей, совершенно непохожих друг на друга.
Поэтому специалист определит плотность камня без каких-либо приспособлений, зная лишь его разновидность.
Песчаник — физико-технические характеристики
- Средняя плотность: 2340-2530 кг/м3
- Придел прочности при сжатии: — в сухом состоянии: 105 МПа (прочный) — в водонасыщенном состоянии: 80 МПа (прочный)
- Коэффициент снижения прочности при насыщении водой: 0,7-0,8 МПа
- Водопоглощение: 0,69 — 2,7 %
- Пористость: 0,69 — 6,7 %
- Истираемость: 0,6 — 1,2 г/см2
- Марка морозостойкости: 50 (морозостойкий)
- Радиационный параметр (А эфф ЕРН): 138 Бк/кг (1 класс)
- При длительном воздействии солнечных лучей песчаники имеют свойство выцветать.
- Абсорбирует масло, жидкости, кислоты, чувствителен к царапинам (если в интерьере используется в особо эксплуатируемом месте, для защиты поверхности необходимо применять соответствующие средства по уходу за камнем).
Перейти в каталог: Песчаник
Теплопроводность горных пород
В таблице указаны значения теплопроводности горных пород и минералов (среднее значение, минимальное и максимальное) при комнатной температуре в размерности Вт/(м·град).
Указана теплопроводность осадочных пород: аргиллит, глинистый сланец, глина, доломит, известняк, каменная соль, мел, песчаник, торф, уголь, ил, глина, песок.
Теплопроводность магматических пород: базальт, гранит, диабаз, лава, обсидиан, туф. Теплопроводность метаморфических пород: гнейс, кварцит, мрамор, сланец.
Теплопроводность горных пород изменяется в достаточно широких пределах. По значениям в таблице видно, что ее величина составляет от 0,07 Вт/(м·град) у торфа (осадочные породы) до 7,6 Вт/(м·град) у кварцита, относящегося к метаморфическим породам.
Нюансы изготовления глинобита
Глинобитом называют густую массу, изготовленную из жирной глины, не имеющей примесей. Вся технология её приготовления, заключается в разведении глины водой, и тщательной её утрамбовке. По мере того, как испаряется вода, раствор густеет.
- Готовность проверяют дедовским способом: кладут на палку глиняный брусок, и если он лишь слегка изогнётся и больше не деформируется – значит, глинобит получился качественным. Именно из него и изготавливают кирпич глинобитный (глинобетонный камень).
- Он является отличным материалом для возведения печей, а вот для строительства домов люди издавна предпочитали делать камни с наполнителем в виде соломенной сечки, шерсти, опилок. Причина проста: стены из них получаются более тёплыми.
- В сельских местностях, располагающихся в южных широтах, глиносоломенный камень (саман), и сегодня достаточно популярен. Из него строят не только сараи, курятники и свинарники, но и жилые дома.
Двухэтажный саманный дом
Обмазка наружных стен глинобитом
Хозяину вдвойне приятен тот факт, что выглядеть такой дом может очень интересно, и даже с претензией на оригинальность, а цена, которую при этом придётся заплатить, будет минимальной.
Особенности камня из глины
Глинобетонный отформованный камень — как, впрочем, и саман, может быть только высушен, а может быть ещё и обожжён. В первом случае это будет кирпич-сырец, а во втором — полноценный кирпич.
При соблюдении стандартных размеров, вес глиняного кирпича ручной формовки, не особо отличается от веса обычного полнотелого кирпича, и варьируется в пределах 3,25-3,45кг.
Обожжённый кирпич из светлой глины: ручная формовка
Несмотря на то, геометрия бруска не всегда соответствует существующему стандарту, и имеет некоторые отклонения, в целом он имеет неплохой вид, и может использоваться не только для строительства печей, но и для лицевой кладки фасадов, оформляемых под старину.
Кирпич глиняный красный
Что касается самана, то он после обжига получается пористым — а значит, показатели его теплопроводности улучшаются. Поры образуются за счёт выгорания соломы в процессе обжига.
При этом камень перестаёт быть восприимчивым к влаге. В таком случае, его можно использовать для частного строительства даже в местностях с сырым климатом.
Саманная стена с кирпичной облицовкой
Если саманные стены обложить лицевым кирпичом, что мы и видим на представленном выше примере, дом получится не только тёплым, но и будет иметь вполне достойный внешний вид. Саман является прекрасной альтернативой ячеистобетонным блокам, которые стоят во много раз дороже, да и не в каждой местности есть в продаже.
Обмазка печи глиной
Кладка кирпича на глину предпочтительна и при строительстве печей, что делается уже не ради экономии. В условиях высоких температур, раствор из глины образует с кирпичом монолит, который идеально удерживает тепло. Именно поэтому, печи зачастую сверху полностью обмазывают глиной.
Чтобы глинобит получился качественным
Для получения правильной глинобитной массы, глина, используемая для замеса, должна быть однородной. В ней не должно быть даже незначительного содержания гравия. При нагревании он расширяется сильнее, и будет попросту разрушать камень изнутри.
Итак:
- Чтобы получить глиняный красный кирпич хорошего качества, либо раствор для кладки печи, в ней не должно быть ещё и известковых включений.
- При высоких температурах известь превращается в кипелку, и при попадании воды провоцирует образованию в кирпичах вздутий и трещин.
- Поэтому при заливке глины водой, её сначала прощупывают руками, удаляя все крупные включения. Если это комки извести размером более 3 мм, необходимо определить их процентное содержание.
- Для этого взвешивают всю порцию замоченной глины, и отдельно – известковые комки. Оказалось, что на 5кг глины приходится более 0,5кг извести? Для печного кирпича она точно непригодна!
Вымешивают глину ногами
- А вообще, лучший помощник в изготовлении глинобита – это время. Если вы всерьёз задались целью изготовить самостоятельно кирпич, имейте в виду, что подготовка глины должна начинаться за год, а ещё лучше за два.
- Её расстилают в огороде слоем в 10-12 см, и оставляют прямо под открытым небом. Многократные циклы замораживания и оттаивания разрушат все примеси, и останется одна только качественная глина.
- Её равномерное насыщение водой — крайне важный нюанс. Поэтому перед тем, как приступать к вымешиванию раствора, её просто заливают, и дают несколько часов для набухания.
Потом массу перемешивают лопатой, обрабатывают трамбовкой, и только потом начинают мять ногами. По окончании этого процесса утрамбованную глину накрывают мокрой тканью и оставляют полежать ещё 10-12 часов — только после этого можно начинать формовать глинобитный кирпич.
Неверные свойства теплоемкости воды
Теплоемкость воды имеет аномальные свойства. Оказывается, что с повышением температуры воды ее теплоемкость уменьшается, эта динамика сохраняется до 37 ° С, а с увеличением температуры теплоемкость начинает увеличиваться.
Этот факт содержит одно интересное утверждение. Условно говоря, сама природа на фоне воды определила 37 ° C как наиболее комфортную температуру тела человека, при условии, конечно, что соблюдаются все остальные факторы. В случае каких-либо динамических изменений температуры окружающей среды, температура воды стремится к 37 ° C
Энтальпия
— это свойство вещества, которое указывает количество энергии, которое может быть преобразовано в тепло.
Энтальпия
— это термодинамическое свойство вещества, которое указываетуровень энергии, запасенной в молекулярной структуре. Это означает, что хотя вещество может иметь энергию на земле, не все они могут быть преобразованы в тепло. Часть внутренней энергиивсегда остается в содержании и сохраняет свою молекулярную структуру. Некоторые вещества недоступны, когда его температура приближается к температуре окружающей среды. Следовательно,энтальпия — это количество энергии, которое доступно для преобразования в тепло при определенной температуре и давлении.Единицы энтальпии — британская тепловая единица или джоуль для энергии и Btu / фунт / Дж / кг для удельной энергии.
Теплоёмкость для различных процессов и состояний вещества
Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).
Теплоёмкость идеального газа
Основная статья: Теплоёмкость идеального газа
Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.
Молярная теплоёмкость при постоянном объёме:
CV=dUdT=i2R,{\displaystyle C_{V}={dU \over dT}={\frac {i}{2}}R,}
где R{\displaystyle R} ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная, i{\displaystyle i} — число .
Молярная теплоёмкость при постоянном давлении связана с CV{\displaystyle C_{V}} соотношением Майера:
CP=CV+R=i+22R.{\displaystyle C_{P}=C_{V}+R={{i+2} \over 2}R.}
Теплоёмкость кристаллов
Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела
Существует несколько теорий теплоёмкости твердого тела:
- Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
- Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости.
- Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.
Что такое авиационное топливо?
Топливом для использования в авиационной отрасли называется горючее вещество, предназначенное для подачи в смеси с воздухом в камеру сгорания самолётного двигателя. Цель – получение тепловой энергии, которая выделяется в момент окисления смеси кислородом, то есть сгорания. Топливо, заливаемое в кессонные баки летательных аппаратов, делится на два вида.
Авиационный бензин
Данный вид топлива получается с помощью прямой перегонки, риформинга или каталитического крекинга. Основными физико-химическими показателями авиабензина являются:
- стойкость к детонации;
- химическая стабильность;
- фракционный состав.
Для бензина характерными являются высокая испаряемость и пригодность к образованию необходимых для текущих условий полёта топливо-воздушных смесей.
Данный вид горючей смеси применяется для сжигания в поршневых двигателях внутреннего сгорания. Самолёты с такими моторами летают на небольшие расстояния на местных авиалиниях, используются для проведения демонстрационных полётов и авиашоу. Наиболее популярными в российской малой авиации считались марки этилированного бензина для нормальных и обеднённых смесей, разработанные к последней четверти прошлого века – Б91/115 и Б95/130. Сегодня парк малой авиации полностью заправляется обычным бензином АИ-95, либо импортным топливом AVGAS 100LL.
Интересно: Почему дети сосут палец? Причины, что делать, фото и видео
Авиационный керосин
Для сжигания в камере сгорания турбореактивного самолётного двигателя обычный бензин не годится. В поршневых двигателях используется эффект резкого воспламенения бензиновоздушной смеси для создания толчка на головке цилиндра. Совсем иной принцип используется в реактивных двигателях
Здесь важно, чтобы горение было плавным. Именно это и обеспечивает сжигаемый авиационный керосин. Для заливки в кессоны реактивных самолётов используется топливо, которое получают из среднедистиллятной керосиновой фракции нефти с температурой выкипания 150-280°С
96-98% состава авиационного керосина – это нафтеновые, парафиновые и ароматические углеводороды. Остальная доля в составе – за смолами, азотистыми и металлоорганическими соединениями
Для заливки в кессоны реактивных самолётов используется топливо, которое получают из среднедистиллятной керосиновой фракции нефти с температурой выкипания 150-280°С. 96-98% состава авиационного керосина – это нафтеновые, парафиновые и ароматические углеводороды. Остальная доля в составе – за смолами, азотистыми и металлоорганическими соединениями.
Зависимость плотности от температуры
Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность в определённом диапазоне температур ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого значения.
При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Вода, кремний, висмут и некоторые другие вещества являются исключениями из данного правила, так как их плотность при затвердевании уменьшается.
Теплопроводность цветных металлов, теплоемкость и плотность сплавов
В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.
Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.
По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.
Коэффициенты теплопроводности сплавов
В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.
В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.
Удельная теплоемкость цветных сплавов
В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.
Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.
Удельная теплоемкость многокомпонентных специальных сплавов
Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град).Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.
Плотность сплавов
Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.
ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.
- Михеев М.А., Михеева И.М. Основы теплопередачи.
- Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
- Шелудяк Ю.Е., Кашпоров Л.Я. и др. Теплофизические свойства компонентов горючих систем. М. 1992. — 184 с.
- Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М.: «Металлургия», 1975.- 368 с.
Плотность и теплопроводность теплоизоляции в виде плит и сегментов
В таблице даны значения плотности и температурная зависимость теплопроводности теплоизоляции, формованной в виде плит, сегментов и др., а также их предельная рабочая температура.
Плотность теплоизоляции, теплопроводность и температура указаны для такой теплоизоляции, как: диатомовые сегменты, совелитовые сегменты и скорлупы, ньювелевые скорлупы, асбоцементные сегменты, вулканитовые плиты, вермикулитовые скорлупы, пенобетонные сегменты, пеностеклянные плиты, пробковые сегменты, торфяные сегменты, минераловатные сегменты, альфоль из гладких листов (сегменты), альфоль гофрированный (сегменты), шариковая изоляция засыпкой в сегменты, стерженьковая теплоизоляция засыпкой в сегменты (фарфоровые прутики диаметром 0,5 мм).
Наиболее легкая теплоизоляция — альфоль, по данным таблицы имеет плотность 200 кг/м3 и максимальную рабочую температуру до 500°С. К высокотемпературной теплоизоляции (до 2000°С) относятся шариковая и стерженьковая теплоизоляция. Однако, такая теплоизоляция имеет высокую плотность и низкую теплопроводность, равную 0,23…0,39 Вт/(м·град). Теплопроводность теплоизоляции зависит от температуры. В таблице представлены формулы температурной зависимости теплопроводности теплоизоляции и ее предельная рабочая температура.
Примечание: для расчета коэффициента теплопроводности по зависимостям в таблице, необходимо температуру подставлять в градусах Цельсия.
Теплофизические свойства бетонов
Образцы с разной теплофизикой Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.
Теплопроводность.
Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать
При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис
1).
Таблица теплопроводности
Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:
где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.
Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.
Коэффициент температурного расширения и теплоемкость бетона.
Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.
Тепловое расширение способно привести к растрескиванию
Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.
От показателя теплоемкости бетона зависит скорость прогрева бетона до нужной температуры, а значит, и до нужных физических характеристик. Без учета теплоемкости зачастую попросту невозможно рассчитать время подачи жидкого бетона на объект строительства, особенно в холодное время года. Обычное значение этого показателя для большинства распространенных марок бетона колеблется в пределах от 0,28 до 0,33 ккал/кг .
beton-cement-ru.ru
Как испытывают бетон на теплоемкость при изготовлении
Для определения теплоемкости заготовленную массу выкладывают в специальную форму и ставят температурный датчик по центру. Далее она подвергается вибрации, при этом саму форму в месте зазора закрывают крышкой с уплотняющей замазкой, имеющей водонепроницаемые свойства. Для проведения этой процедуры используют аппаратуру, которая одновременно регистрирует и в то же время регулирует температурные колебания внутри формы со смесью.
Форму, в которую укладывают смесь помещают в адиабатическую камеру, способную поддерживать внутри нужную температуру для измерений.
При этом важно отметить, что температура в адиабатической камере должна быть доведена до температуры самой бетонной массы. Все замеры и записи температурных колебаний фиксируются на ленту регистрирующей и регулирующей аппаратуры
В дальнейшем после проведения испытаний проводят расшифровку лент регистрирующей аппаратуры. Важно отметить, что удельная теплоемкость смеси должна быть исследована не позднее 1 часа после ее изготовления, а такое испытание необходимо проводить не менее 5 суток пока температура в камере не превысит 1°.
Заключение
Песок – это уникальный природный материал, который помогает решать многие строительные вопросы. Свойства данного материала позволяют использовать его при возведении сложнейших конструкций.
А благодаря низкой теплоемкости этот материал идеально подходит для возведения помещений, где требуется поддерживать низкие температуры без резких перепадов.
Испокон веков песок использовался человеком, и считался самым надежным строительным материалом, который создала природа. Многообразие видов и сфер применения, помогает заранее продумать, какими свойствами будет обладать построенное здание.