Пример расчета толщины стены по теплопроводности
При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.
Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.
Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:
- теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
- коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
- теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала
Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:
0,76 х 3,5 = 2,66 м
Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:
- облицовка в полкирпича 12,5 см
- внутренняя стена в кирпич 25 см
Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:
3,5 – 0,5 = 3 единицы
При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:
3 х 0,039 = 11,7 см
Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:
3 х 0,037 = 11,1 см
На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.
Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.
Например, 10 см прослойка замкнутого контура обеспечивает теплоспопротивление 0,18 либо 0,15 единиц при отрицательных, положительных температурах, соответственно. Сантиметровый воздушный зазор добавляет несущей стене 0,15 или 0,13 единиц теплосопротивления (зимой, летом, соответственно).
Особенности и отличия типов кирпича
Строительное назначение различных марок кирпича разное – это специальный кирпич, облицовочный и строительные марки. При возведении дома используют обычный строительный кирпич, для декорирования фасадов домов – облицовочные изделия, а специальные марки используют для особых условий эксплуатации конструкции из кирпича, например, в печи или камине.
Полнотелые кирпичные изделия, согласно технологии изготовления, имеют ≤ 13% воздушных пустот: такой кирпич подходит для строительства наружных и внутренних стен дома, колонн и столбов, перемычек и арок. Объекты из полнотелого кирпича могут выдерживать повышенную нагрузку из-за высоких показателей прочности по сжатию, изгибанию и морозоустойчивости. Параметры теплоизоляции кирпича, свойства водопоглощения и сцепляемость зависят от степени пористости изделия. Этот кирпич имеет средние показатели сопротивления к теплопередаче, поэтому стены дома рекомендуется делать достаточно толстыми (не менее 0,5 метра), и проводить утепление другими средствами.
Пустотелый кирпич производится с объемом пустот ≤ 45%, поэтому его вес меньше, чем у стандартного полнотелого кирпича. Его используют при строительстве внутренних перегородок, наружных стен и каркасов многоэтажных высотных домов. Форма пустот бывает сквозной или односторонней (закрытой с торца), в форме круга, квадрата, овала или прямоугольника. Формируют пустоты в вертикальном или горизонтальном направлении относительно продольной оси изделия.
Пустоты в и без того небольшом изделии экономят почти половину строительного материала и делают стены теплее. При укладке пустотелого кирпича необходимо контролировать консистенцию цементного раствора – он не должен растекаться по поверхности и заполнять пустоты, которые формируют в стене, о чем писалось выше.
Назначение облицовочного кирпича понятно из его названия – он используется для облицовки фасадов и боковых стен дома. Размеры облицовочных изделий такие же, как и у обычного строительного кирпича (можно приобрести и партию с уменьшенными размерами), что облегчает работу с ним. Кирпич для облицовки часто изготавливают с пустотами, что улучшает его потребительские характеристики – работая с таким кирпичом, можно сэкономить на дополнительной теплоизоляции стен.
Пример марок специальных кирпичей – теплоизолирующие и огнеупорные изделия. Обе марки используют при строительстве печей для обогрева и домашних каминов, а также промышленных плавильных печей. Материал для изготовления – шамотная глина с особыми свойствами огнеупорности. При этом разные технологии изготовления позволяют использовать огнеупорный кирпич для разных условий эксплуатации. Например, кирпич с огнеупорными свойствами может выдержать температуру больше 1600 °С, а теплоизолирующие марки кирпича применяют в технологиях теплоизоляции, например, при нагревании наружных стенок мартеновских печей, а также для предотвращения потерь тепла в зданиях. Для строительства наружных несущих стен дома огнеупорный кирпич не годится – из-за невысокой прочности на сжатие из него можно строить только внутренние перегородки в доме.
Основное предназначение клинкерного кирпича – облицовка фундаментов домов. Эта марка имеет высокий коэффициент морозоустойчивости, механической прочности и водопоглощения, так как для его изготовления используют тугоплавкую глину. Сырой клинкерный кирпич обжигается при более высоких температурах, чем при обжиге обычных марок кирпича.
голоса
Рейтинг статьи
Размеры листов
Весь применяемый в строительстве пеноплекс имеет стандартные габариты. Благодаря этому его очень удобно использовать для обшивки ограждающих конструкций и делать предварительные расчеты его необходимого количества.
Размеры пеноплекс 50 мм, поставляемый на современный рынок, в большинстве случаев имеет 60х120 мм. Именно такие листы наиболее распространены и востребованы у частных застройщиков.
Многие владельцы загородных домов, решившие утеплить их ограждающие конструкции, интересуются в том числе и тем, сколько пеноплекса 50-мм в штуках в упаковку кладут производители. В зависимости от разновидности такие плиты могут продаваться одновременно по 7-8 шт. Обшить с использованием материала из одной упаковки, таким образом, можно 4.85 или 5.55 квадратных метра утепляемых поверхностей.
Широко используются такие листы как в частном, так и промышленном строительстве. В последнем случае иногда могут применяться также плиты пеноплекса 50 мм размером 60х240 мм. Такими листами стены и фундаменты высотных домов, конечно же, обшивать удобнее.
Продается этот материал абсолютно во всех строительных супермаркетах. Стоит он относительно недорого. Цена за упаковку пеноплекса 50 мм равна порядка 1500 р.
Плотность облицовочного кирпича
Облицовочные (лицевые) блоки имеют ровную форму, глянцевую поверхность, обладают средней прочностью и надежной теплоизоляцией. Характеристики плотности фасадных материалов варьируются в пределах от 1300 до 1450 кг/см3. Износостойкость состава обусловлена невысокой пористостью — от 6 до 14%. Кирпичи изготавливают с щелями и применяют для декорирования наружных стен зданий, оформления ограждающих конструкций, парковых декоративных форм и т.д.
Производят и добавочный подвид строительного материала — теплый. Состав отличается большим числом пор, по сравнению со стандартными облицовочными изделиями. Плотность варьируется в пределах от 1100 до 1150 кг/м3.
Облицовочные блоки с глазурированием имеют слой стекловидной массы, непроницаемый для влаги. Повторный обжиг, который положен по технологии изготовления после нанесения глазури, не сказывается на прочности изделий. Характеристики уплотненности у подвида типовые — от 1300 до 1450 кг/м3. Но стоимость состава выше стандартного за счет высоких декоративных качеств.
Что такое теплопроводность материалов
Критерием теплопроводимости строительных
материалов считается их способность сохранить тепловую энергию или отдавать ее,
не растрачивая ее попусту
При выборе строительных материалов важно чтобы
тепловая энергия использоваться по назначению
Теплопроводность кирпичных изделий это свойство
пропускать тепловую энергию через себя. Она показывает степень нагрева
кирпичной стены, а так же способность проводить и передавать тепло. Теплообмен
происходит до тех пор, пока один из материалов обладает более высокой
температурой. Когда температурный показатель у обоих материалов приблизится к
одинаковому числу, теплообмен прекратится.
Разные типы кирпича обладают различными
коэффициентами теплопроводности.
- Для сооружения несущих конструкций, перегородок используют
полнотелые изделия. - Для возведения каминов нужен огнеупорный кирпич с высоким
коэффициентом теплообмена. - Облицовочный кирпич должен иметь низкий уровень теплопроводности. Его
предназначение создать строению внешний привлекательный вид, стиль, и создать
препятствие потери тепла.
Зачем нужно знать теплопроводность строительных материалов?
Применение этого коэффициента в строительстве более чем обосновано. Проблема сохранения тепла в зданиях и сооружениях в последнее время стала весьма актуальна.
Речь здесь идет о банальной экономии, которая, в масштабах села или города принимает внушительные размеры. Согласитесь, чтобы добиться комфортной температуры в жилом доме, необходимо достаточно топлива. А если стены имеют плохую теплоизоляцию, количество топлива увеличивается в разы.
Принцип — «толще стена – теплее в доме» является финансово нецелесообразен. Поэтому основой любой методики расчета тепловых потерь зданий является оперирование этой величиной.
Это актуально как для многоквартирных высотных домов, так и для частных жилищ в селе или за городом.
Все показатели теплопроводности подробно рассмотрены здесь — http://dearhouse.ru/materialy/teploprovodnost-stroitelnyx-materialov/, а в этой статье мы коснемся наиболее популярных материалов.
Эта физическая величина исчисляется в Вт/м* К
Существует два вида строительных материалов, для которых важно учитывать объем тепловой энергии, проходящей через них:
- Каркасные: кирпич, бетон, дерево и т.д. Из них строят несущие и межкомнатные стены, элементы кровли и пола.
- Теплоизоляционные. Они предназначены для улучшения характеристик каркасных материалов. Не рассчитаны на большие механические нагрузки.
Из этого легко сделать вывод, что сам дом, его основание, монтируется из каркасных материалов. Они, в свою очередь, покрываются снаружи и внутри теплоизоляционными. Таким образом стены частного дома становятся достаточно устойчивыми к перепаду температуры на улице.
Для теплоизоляционных видов значение теплопроводности является определяющим.
Например, для минеральной ваты оно составляет 0,07 Вт/м* К, а для пенопласта – 0,041 Вт/м* К
Поэтому важно рассмотреть каркасные виды строительных материалов, так как они будут характеризовать основные тепловые потери в здании
Теплопроводность каркасных строительных материалов
До последнего времени наилучшими теплоизоляционными свойствами обладали дома, построенные из дерева.
Коэффициент теплопроводности сосны, например, составляет всего 0,18 Вт/м* К. Однако существует множество факторов, которые могут повлиять на этот показатель.
Важнейшим из них является плотность и влажность древесины. Именно поэтому для строительства зачастую используют бревна или брусья, прошедшие специальную предварительную подготовку.
У каждого вида древесины свои показатели теплопроводности. Так дом из бруса сосны будет достаточно теплым, а вот из осины или липы строить вообще не принято.
Развитие новых технологий привело к появлению газосиликата – ячеистого материала. Он представляет собой бетонную основу, которая с помощью автоклавной обработки и добавления алюминиевой пудры образует пористую структуру.
Воздушные камеры значительно улучшают показатель теплопроводности, который даже лучше, чем у дерева – 0,12 Вт/м* К, при плотности материала 500 кг/м³.
Несколько худшими энергосберегающими характеристиками обладает пенобетон – 0,38 Вт/м* К.
Но несмотря на столь ощутимую разницу, газосиликат стоит значительно больше, чем пенобетон. Поэтому предпочтение зачастую отдается последнему.
К классическому материалу возведения зданий можно смело отнести кирпич. Благодаря большому выбору изделий различных размеров и конфигураций, теплопроводность для кирпича имеет различные значения. В таблице представлены характеристики наиболее часто встречающихся видов.
Худшими значениями обладают плотные бетонные растворы. Но они применяются для капитального строительства в качестве перекрытий и основного каркаса.
Поэтому для многоэтажных зданий характерно использование двух типов – бетон и кирпич. В таблице показаны коэффициенты теплопроводности для бетона и раствора.
Для выбора определенного вида материалов необходимо ориентироваться, прежде всего, на эксплуатационные характеристики здания в совокупности с климатическими особенностями региона.
Они будут основными критериями при анализе параметров строительных материалов, а в частности – коэффициента теплопроводности.
Если у вас возникли вопросы по строительству, отправляйтесь на наш строительный форум и задайте их там. Наши специалисты подскажут, как оптимально провести работу.
Как произвести нужные расчеты?
Величина R, установленная СНиП, может варьироваться в зависимости от особенностей климата региона. Для Москвы и Подмосковья стены жилых домов должны обладать сопротивлением передаче тепла не менее 3,28 м2°C/Вт. Возьмем этот показатель за эталон и вычислим, сколько кирпича и соответственно плит Пеноплекса необходимо, чтобы вписаться в рамки.
Формула расчета выглядит так:δ = Rx*λ, где:δ —толщины стены, м;
λ — теплопроводность стенового материала, Вт/м2°C.
R — сопротивление теплопередаче, м2°C/Вт.
Для традиционной кирпичной кладки в Московском регионе согласно формуле параметр будет:
δ= 3,28х0,7 = 2,296 м.
Такая же стена, но выполненная из Пеноплекса плотностью 30 кг/м3, будет толщиной: δ=3,28х0,037=0,12136 м, или 12 см.
А теперь просчитаем разницу: 2,296/0,12136=19. Именно во столько раз кирпичная кладка должна быть толще слоя Пеноплекса, чтобы соответствовать одному показателю теплоизоляции.
Коэффициент теплопроводности кирпича в сравнении с другими материалами
Кирпич – настолько известный стройматериал, что используется практически везде, даже для замены бетона или дерева. Из этого строительного материала можно строить небольшие дачные домики или крупные стратегические объекты, а популярность кирпича из любого природного материала обусловлена его обоснована прочностью, долговечностью и другими параметрами, среди которых теплопроводность красного кирпича, высокие характеристики шумо- и теплоизоляции, и другие показатели. В индивидуальном строительстве главное не только долговечность жилья, но и тепло в доме, поэтому коэффициент теплопроводности силикатного кирпича играет решающую роль при выборе строительных материалов, а сравнить эксплуатационные характеристики этих строительных изделий можно с деревом или ячеистым бетоном, так как это – главные конкуренты кирпича в частном жилищном строительстве.
Коэффициент теплопроводности кирпичей
В экономике страны строительная отрасль выделяется как наиболее энергоемкая:
- 10% энергии потребляют гражданские объекты;
- 35-45% расходуют сооружения промышленного назначения;
- 50-55% энергопотребления относится к жилым зданиям.
При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов
Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.
Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.
Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.
Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.
Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.
Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.
Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.
Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:
- Сопротивлений передачи тепла наружной и внутренней поверхностей.
- Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
- От средней фактической плотности потока тепла за период измерений.
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:
Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
https://youtube.com/watch?v=0bwsJcTqaXQ
Что такое теплопроводность?
процесс передачи тепловой энергии
В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
Долговечность определяет срок службы материала;
Толщина материала определяет, сколько пространства будет занимать теплоизоляция
При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
Экологичность материала особенно важна при выполнении внутреннего утепления
Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Достоинства и недостатки
Среди положительных свойств огнеупорного материала отмечают следующее:
- сравнительно небольшой вес;
- отлично справляется с температурными перепадами;
- выдерживает воздействие агрессивных внешних факторов;
- хорошая теплоемкость и инерция, проявляющаяся в быстром нагревании и медленном остывании;
- вариации формы и размера;
- способность выдерживать температуру до 1690 °C включительно;
- привлекательный внешний вид и удовлетворение любых запросов за счет наличия разных оттенков и текстуры.
Основными недостатками являются следующие моменты:
- проблема резки и распила, так как кирпич обладает повышенными прочностными характеристиками;
- высокая стоимость.
Несколько слов необходимо сказать о глиноземном (шамотном) кирпиче. Среди других видов он обладает особой прочностью и отличается приемлемой ценой. За основу огнеупорного материала берется специальная глина алюмосиликатного типа, свойства которой усиливаются добавками порошка из графитовых и коксовых веществ.
Подробнее о свойствах шамотного кирпича читайте в .
Что обозначает показатель?
Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.
Какая теплопроводность изделий?
От состава, способа изготовления и пустотелости зависят характеристики стройматериалов. Коэффициент теплопроводности кирпича характеризует его способность проводить тепло. Клинкерные изделия отличаются высоким уровнем, а керамические материалы — самым низким в сравнении с другими видами. Характеристика разновидностей изделия указана в таблице.
Вид | Показатель, Вт/м°С | |
---|---|---|
Керамический | Полнотелый | 0,5—0,8 |
Щелевой | 0,34—0,43 | |
Поризованный | 0,22 | |
Клинкерный | 0,8—1,16 | |
Шамотный | 0,6 | |
Силикатный | Полнотелый | 0,7—0,8 |
Пустотелый | 0,4—0,66 |
Сколько кирпичной кладки заменяет пеноплекс?
Расчет замены строительного камня пенополистиролом осуществляется из соотношения результатов умножения (отдельно для кирпича и пенопласта) показателей сопротивления теплопередачи к теплопроводности. Считается, что приемлемая цифра для зданий непромышленного типа 2,1 м2°С/Вт противления теплоотдачи. Так, для кирпичной кладки умножение средних теплоизоляционных характеристик дает следующую толщину: 2,1×0,7 Вт/м2°С = 1,47 м. В случае с «Пеноплексом» плотностью 30 кг/м3: 2,1×0,037 = 0,077 метра. При соотношении со строительным камнем (1,47/0,077) получается, что пенополистирола нужно приблизительно в 19 раз меньше. Так кирпич и «Пеноплекс» будут иметь одинаковые теплоизоляционные характеристики.
Для того чтобы не утруждаться подсчетами, существует ориентировочное соотношение по замене строительного камня пенополистиролом. Блоком пенопласта толщиной в 2 см возможно заменить 370 мм кирпичной стены. Экономия материальных затрат составляет минимум 150 рублей на квадратный метр облицовки. «Пеноплекс» 30 мм заменяет кирпича почти на 6 см. Если толщина «Пеноплекса» составляет 50 миллиметров, эквивалент кирпичной кладки равен 9,25 сантиметрам.
Источник
Таблица теплопроводности материалов
Материал | Теплопроводность материалов, Вт/м*⸰С | Плотность, кг/м³ |
Пенополиуретан | 0,020 | 30 |
0,029 | 40 | |
0,035 | 60 | |
0,041 | 80 | |
Пенополистирол | 0,037 | 10-11 |
0,035 | 15-16 | |
0,037 | 16-17 | |
0,033 | 25-27 | |
0,041 | 35-37 | |
Пенополистирол (экструдированный) | 0,028-0,034 | 28-45 |
Базальтовая вата | 0,039 | 30-35 |
0,036 | 34-38 | |
0,035 | 38-45 | |
0,035 | 40-50 | |
0,036 | 80-90 | |
0,038 | 145 | |
0,038 | 120-190 | |
Эковата | 0,032 | 35 |
0,038 | 50 | |
0,04 | 65 | |
0,041 | 70 | |
Изолон | 0,031 | 33 |
0,033 | 50 | |
0,036 | 66 | |
0,039 | 100 | |
Пенофол | 0,037-0,051 | 45 |
0,038-0,052 | 54 | |
0,038-0,052 | 74 |
Экологичность.
Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.
Пожарная безопасность.
Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.
Паро- и водонепроницаемость.
Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.
Долговечность.
В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.
Коэффициент теплопроводности материалов.
Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.
Материал | Коэфф. тепл. Вт/(м2*К) |
Алебастровые плиты | 0,470 |
Алюминий | 230,0 |
Асбест (шифер) | 0,350 |
Асбест волокнистый | 0,150 |
Асбестоцемент | 1,760 |
Асбоцементные плиты | 0,350 |
Асфальт | 0,720 |
Асфальт в полах | 0,800 |
Бакелит | 0,230 |
Бетон на каменном щебне | 1,300 |
Бетон на песке | 0,700 |
Бетон пористый | 1,400 |
Бетон сплошной | 1,750 |
Бетон термоизоляционный | 0,180 |
Битум | 0,470 |
Бумага | 0,140 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,100 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,350 |
Глинозем | 2,330 |
Гравий (наполнитель) | 0,930 |
Гранит, базальт | 3,500 |
Грунт 10% воды | 1,750 |
Грунт 20% воды | 2,100 |
Грунт песчаный | 1,160 |
Грунт сухой | 0,400 |
Грунт утрамбованный | 1,050 |
Гудрон | 0,300 |
Древесина — доски | 0,150 |
Древесина — фанера | 0,150 |
Древесина твердых пород | 0,200 |
Древесно-стружечная плита ДСП | 0,200 |
Дюралюминий | 160,0 |
Железобетон | 1,700 |
Зола древесная | 0,150 |
Известняк | 1,700 |
Известь-песок раствор | 0,870 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,400 |
Картон строительный многослойный | 0,130 |
Каучук вспененный | 0,030 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,200 |
Кирпич кремнеземный | 0,150 |
Кирпич пустотелый | 0,440 |
Кирпич силикатный | 0,810 |
Кирпич сплошной | 0,670 |
Кирпич шлаковый | 0,580 |
Кремнезистые плиты | 0,070 |
Латунь | 110,0 |
Лед 0°С | 2,210 |
Лед -20°С | 2,440 |
Липа, береза, клен, дуб (15% влажности) | 0,150 |
Медь | 380,0 |
Мипора | 0,085 |
Опилки — засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,190 |
Пенобетон | 0,300 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,040 |
Пенопласт ПХВ-1 | 0,050 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,040 |
Пенополистирол ПС-БС | 0,040 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,060 |
Пеностекло тяжелое | 0,080 |
Пергамин | 0,170 |
Перлит | 0,050 |
Перлито-цементные плиты | 0,080 |
Песок 0% влажности | 0,330 |
Песок 10% влажности | 0,970 |
Песок 20% влажности | 1,330 |
Песчаник обожженный | 1,500 |
Плитка облицовочная | 1,050 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,040 |
Портландцемент раствор | 0,470 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,050 |
Резина | 0,150 |
Рубероид | 0,170 |
Сланец | 2,100 |
Снег | 1,500 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,150 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,230 |
Сталь | 52,0 |
Стекло | 1,150 |
Стекловата | 0,050 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,300 |
Стружки — набивка | 0,120 |
Тефлон | 0,250 |
Толь бумажный | 0,230 |
Цементные плиты | 1,920 |
Цемент-песок раствор | 1,200 |
Чугун | 56,0 |
Шлак гранулированный | 0,150 |
Шлак котельный | 0,290 |
Шлакобетон | 0,600 |
Штукатурка сухая | 0,210 |
Штукатурка цементная | 0,900 |
Эбонит | 0,160 |