Ремонт медных труб калориферов приточной вентиляции

Какие силовые исполнительные устройства не требуют контроля целостности.

1. Промежуточное реле.

Реле должны потреблять минимальную мощность и коммутировать максимальное напряжение. То-есть лучше всего применять электронное реле.

В свою очередь уже реле чем-то управляет.

Существуют промежуточные электронные реле 220В, ток срабатывания которых до 0.25А и следовательно ими можно управлять, коммутируя силу слаботочными адресными релейными модулями «Рубеж».

Промежуточное реле PK-1P стоит 680р, коммутирует 16А 220В и потребляет при срабатывании 220В 0.05А.

Вот это я понимаю релейный усилитель!

2. Независимый расцепитель.

Сигнал пожарной сигнализации подает питание на расцепитель и расцепитель выключает автомат.

Но как из пожарной сигнализации подать сигнал 220В на расцепитель?

При помощи любого реле, способного коммутировать 220В.

Но стоит помнить, что независимый расцепитель — устройство, осуществляющее механическую работу и его ток потребления больше, чем катушки реле.

Вот параметры управляющих сигналов для самых распространенных независимых расцепителей S2C-A.

Видим, что ток срабатывания S2C-A2 при 230В составляет 1А. То-есть слабые реле слаботочных релейных модулей не все подойдут.

Заманчиво управлять слаботочным независимым расцепителем S2C-A1, напряжение срабатывания которого 12..60В.

Но вот ток срабатывания … для 12В составляет 2.2А. Сомнение вызывает что ток срабатывания для 24В 4.5А — больше, чем для 12В, хотя должен быть меньше.

Сработать такой расцепитель при помощи «С2000-КПБ» будет на грани фола, поскольку максимальный ток коммутации блока 2.5А. Ток коммутации «С2000-СП2 ИСП.02» — 3А.

Успокаивает то, что время работы расцепителя 10мс.

Независимый расцепитель — это хороший способ управления, если для запуска сложной вентсистемы требуется дополнительное внимание: вентсистема не запустится просто после снятии тревоги. Для включения системы необходимо ногами прийти к выключенному расцепителем автомату. Для включения системы необходимо ногами прийти к выключенному расцепителем автомату

Для включения системы необходимо ногами прийти к выключенному расцепителем автомату.

Но тут есть один интересный момент. Позволю себе привести цитату из нормативной базы:

СП 60.13330.2012 Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003

12.3 Для зданий и помещений, оборудованных автоматическими установками пожаротушения или автоматической пожарной сигнализацией, следует предусматривать автоматическое блокирование электроприемников систем воздушного отопления, вентиляции, кондиционирования, автономных и оконных кондиционеров, вентиляторных доводчиков, воздушно-тепловых завес и внутренних блоков кондиционеров (далее — системы вентиляции), а также электроприемников систем противодымной вентиляции с этими установками (или пожарной сигнализацией) для:

а) отключения при пожаре систем вентиляции, кроме систем подачи воздуха в тамбур-шлюзы помещений категорий А и Б, а также в машинные отделения лифтов зданий категорий А и Б. Отключение может производиться:

централизованно, прекращая подачу электропитания на распределительные щиты систем вентиляции;

индивидуально для каждой системы.

При использовании оборудования и средств автоматизации, комплектно поставляемых с оборудованием систем вентиляции, отключение приточных систем при пожаре следует производить индивидуально для каждой системы с сохранением электропитания цепей защиты от замораживания. При невозможности сохранения питания цепей защиты от замораживания допускается отключение только вентилятора подачей сигнала от системы пожарной сигнализации в цепь дистанционного управления вентилятором приточной системы. При организации отключения при пожаре с использованием автомата с независимым расцепителем должна проводиться проверка линии передачи сигнала на отключение.

В выделенной фразе о проверке линии передачи сигнала кроется жирная проблема. Независимый расцепитель то скорее всего будет на 220В! И у нас возникает проблема непрерывного контроля целостности цепи управления 220В.

3. Контактор (пускатель).

Сухие контакты реле размыкают цепь самоподхвата магнитного пускателя.

Плюс такого подхода — при снятии тревоги не надо идти ногами к щитам управления.

Так, например, имеет смысл управлять огнезадерживающими клапанами ОЗК: сняли тревогу — ОЗК сами открылись.

На катушке ПМЕ 211 ток всего лишь 0,1А. Но все равно применение слаботочного адресного релейного модуля некоторых адресных систем под вопросом, поскольку это ток непрерывного воздействия.

Исполнительные механизмы

Исполнительные механизмы — относятся электроприводы воздушных клапанов и заслонок, вентиляторов, насосов, компрессорных установок, а также калориферы, охладители, задвижки, заслонки, электроприводыи прочее оборудование.

Исполнительным механизмом называют приводную часть исполнительного устройства. Исполнительные механизмы делятся на гидравлические, электрические и пневматические. В частности электрические могут быть соленоидные (электромагнитные) и с электродвигателями (электрические)

Клапаны и заслонки

Клапаны двухходовые и трехходовые делятся на резьбовые и фланцевые. Клапаны с фланцевым подключением как правило комплектуются монтажным набором с уплотнителем, а с резьбовым — фитингами и уплотняющими шайбами. В качестве проходных, изменяющих расход рабочей среды используются двухходовые клапаны. Они монтируются в системе трубопроводов или воздуховодов так, чтобы направление потока совпадало с направлением стрелки на корпусе клапана. Типичный пример использования такого клапана — контур с локальным циркуляционным насосом.

Трехходовые клапаны служат в качестве смесительных, разделительных и проходных клапанов. Эти клапаны широко применяются в системах  холодоснабжения. Клапаны «бабочка» монтируются на фланцевом соединении. Рабочая часть таких клапанов — укрепленный на вращающейся оси диск. Величина просвета между диском и внутренней поверхностью клапана меняется в зависимости от угла поворота оси. Клапаны такой конструкции чаще всего используются в жидкостных трубопроводах большого диаметра. На воздуховодах как круглого, так и прямоугольного сечения применяются воздушные дроссельные заслонки. Они используются для регулирования воздушных потоков при небольшом статическом давлении. Обратные клапаны нужны для предотвращения движения потока жидкости или газа в обратном направлении, в частности их используют в жидкостных и всасывающих трубопроводах чиллеров и автономных кондиционеров.

Электроприводы воздушных заслонок

Для управления воздушными заслонками часто недостаточно вручную переключать положения клапанов, поэтому используются электроприводы, управляемые дистанционно или автоматически. Электроприводы классифицируются по:

  • величине питающего напряжения (24В AC/DC или 230В 50Гц)
  • величине крутящего момента (необходимое значение определяется площадью воздушного клапана, на который устанавливается привод)
  • способу управления (плавное, двухпозиционное или трехпозиционное)
  • способу возврата в исходное положение (при помощи пружины или с помощью реверсивного электродвигателя)
  • наличию дополнительных переключающих контактов

Отправьте заявку и получите КП

Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.

Рекомендации по сборке ШУВ

Монтажом и тестированием ЩУВ должны заниматься специалисты, имеющие соответствующую квалификацию, самостоятельно монтировать и подключать элементы внутри щита или шкафа не только не рекомендуется, но и запрещено.

Корпуса не изготавливают своими руками, а приобретают в готовом виде или заказывают с учетом специфики вентиляционной системы. Вместе с корпусом поставляется комплект устройств: рубильники, контроллеры, блоки питания, выключатели, элементы защиты и провода.

Нередко встречается и такое, что набор приборов и деталей укомплектован не в полной мере – не хватает проводов или автоматических выключателей. При доборе запчастей необходимо сохранить соответствие технических характеристик (например, сечение проводов или силу тока автомата).

Комплект элементов ЩУВ сопровождается схемой, по которой производится сборка. Любые отступления от схемы могут вести за собой неправильную эксплуатацию или поломку техники

Перед заказом необходимо составить список всех устройств, которые входят в вентиляционную систему, а также высказать пожелания относительно переключения режимов работы, вида контроллера, наличия тех или иных датчиков. В некоторых ЩУВ вместо контроллеров устанавливают реле.

Примером ЩУВ может служить образец со следующим техническим характеристиками:

  • ном. частота – 50 Гц;
  • напряжение – 380 В;
  • напряжение подключенного вентилятора – 220 В;
  • мощность двигателя – 22 кВт;
  • уровень защиты – IP65;
  • размеры – 400х800х180 мм;
  • срок эксплуатации – 10 лет.

Готовые модели промаркированы условными обозначениями, где содержится информация о модификации и ее типоразмере, степени защиты, виде климатического исполнения, номере ТУ или ГОСТ. В последнем случае производители ориентируются на ГОСТ 14254 и ГОСТ 15150.

Как избежать установки системы дымоудаления?

Основная проблема системы – её размер и стоимость. Минимальное сечение воздуховода дымоудаления 800х500 мм или 1000х300 мм, причем оба размера встречаются крайне редко. Существует ряд мер, которые в законном порядке компенсируют систему дымоудаления, т.е. исключают требования по её установке.

− Общее решение. Обосновать отсутствие дымоудаления расчетом пожарных рисков. Расчет не распространяется на многоквартирные дома, детские учреждения и медицинские стационары.− Для любых помещений до 200 м

2

. Оборудовать систему автоматического пожаротушения. В том числе возможно оборудование модульной системой, что менее затратно и практично.− Для торговых залов, офисов и коридоров более 15 м. Добавить в помещение рекреакции с наружными открывающимися окнами.− Для помещений выставок, архивов, мастерских и книгохранилищ (если не подходит пункт 2) – обосновать отказ от системы дымоудаления отсутствием постоянных рабочих мест согласно проекту архитектурных решений.

Что такое автоматический пуск системы дымоудаления и подпора воздуха.

Ну с автоматическим пуском системы слава богу все понятно — это пуск при сработке системы авоматической пожарной сигнализации (АПС).

На шкаф управления вентилятором пртивопожарной системы поступает сигнал пуска от АПС по адресной линии связи (АЛС) (если шкаф управления адресный), либо по по линии сигнала пуска противопожарной защиты (СПЗ).

Линия СПЗ должна быть с контролем целостности и выполнена огнестойкой кабельной линией (ОКЛ).

Линия СПЗ регламентируется 22.07.2008 N 123-ФЗ статья 82 и ГОСТ 31565-2012.

Подробнее про:

шкафы управления системами противопожарной вентиляции;

Описание работы

Контроллер управляет расходом горячей воды через калорифер, поддерживая заданную температуру воздуха, управляя электроприводом М1   при помощи выходного сигнала 0 … 10 В, который подается с клеммы 5 контроллера. Трансформатор  А2 должен подавать питание 24 В на контроллер А1 постоянно, и независимо от того, работает ли вентилятор. Когда вентилятор выключен, контакты 10 и 11 должны быть разомкнуты. При этом терморегулятор будет находится в дежурном режиме, контакты 1 и 2 замкнуты. В этом режиме контроллер отображает  температуру воздуха и поддерживает температуру   обратной  воды в зависимости от уставки.

Температура обратной воды замеряется датчиком Т2. В дежурном режиме калорифер поддерживается в прогретом состоянии, что необходимо для включения приточной системы в зимнее время. При включении вентилятора контакты 10 и 11 контроллера должны замкнуться. Для этого чаще всего используют дифференциальный датчик давления, устанавливаемый на приточный вентилятор. При замыкании этих контактов контроллер переходит в рабочий режим.

В момент включения системы начинается процедура зимнего запуска. Эта процедура призвана обеспечить гарантированный запуск системы в зимний период. Т.к. контроллер не оснащен датчиком наружной температуры, зимний запуск осуществляется каждый раз при включении системы. Время зимнего запуска устанавливается в режиме  настройки уставок. При установке времени = 0 минут, зимний запуск отключается. Алгоритм зимнего запуска прост и надежен.

В случае предельно низких наружных температур, возможно скорректировать температуру обратной воды, поддерживаемой в дежурном режиме. Для этого в режиме уставок необходимо увеличить значение до необходимого уровня. По окончании процедуры зимнего запуска контроллер осуществляет регулирование температуры приточного воздуха и контроль температуры обратной воды, непрерывно считывая данные с датчиков температуры Т1 и Т2.

Температура воздуха замеряется датчиком Т1. В зависимости от разницы между текущей и установленной температурой, а также анализируя значения Р, контроллер поддерживает температуру приточного воздуха по РI — закону. Если I установлен в ноль, то только по Р — закону для температуры воздуха в помещении.

В любом из режимов работы контроллер активно борется с угрозой замерзания теплоносителя, дополнительно открывая смесительный клапан при низкой температуре обратной воды из водяного калорифера. В случае понижения температуры воды меньше  +12 °С, контроллер начинает приоткрывать клапан по Р — закону с фиксированным коэффициентом, если рассчитанное им значение открытия больше существующего в этот  момент. Если температура обратной воды достигла + 7 °С, контроллер переходит в режим авария и контакты реле аварии 1 и 2 контроллера размыкаются, что должно приводить к выключению вентилятора и закрытию воздушной заслонки для приточного воздуха. Контакты 2 и 3 в этот момент замыкаются и их  можно использовать для индикации аварии. Регулирующий клапан открывается  полностью и на лицевой панели контроллера загорается красный  светодиод «Авария». Для дальнейшей работы контроллера необходимо нажать кнопку «Сброс» на клавиатуре терморегулятора. После нажатия этой кнопки терморегулятор переходит в дежурный режим работы. Светодиод «Авария» и реле аварии выключаются только с помощью кнопки «Сброс» на  лицевой панели контроллера или при снятии питания.

Внимание, Пожар1, Пожар2.

Алгоритм работы системы автоматизации может быть разным и он должен быть отражен в проектной документации.

Собственно, вся катавасия с требованием устанавливать не менее трех пожарных датчиков в отсек и вставлять добавочные резисторы для двойной сработки и случилась ради того, чтобы обеспечить сигналы «Пожар1» и «Пожар2» для управления инженерными системами здания.

Некоторые команды управления имеет смысл выдавать по команде «Пожар1», например: мигать табло «Выход», отключать вентиляцию.

Некоторые — по команде «Пожар2», например: запускать дымоудаление, останавливать эскалаторы, открывать двери, опускать лифты, включать оповещение.

Виды конденсатоотводчиков

В зависимости от конструкции и реализованного принципа работы, трубопроводная арматура может быть механической, термодинамической или термостатической. Любой тип паровых конденсатоотводчиков должен отвечать двум основным требованиям:

  • отведение конденсата без потерь острой газообразной фазы;
  • автоматический отвод воздуха из системы.

Конденсат образуется из-за потерь паром тепла в теплообменниках, а также в момент прогрева установок трубопроводов, когда часть газообразной фазы превращается в воду. Выпадение большого количества влаги снижает энергоэффективность оборудования, ускоряет его износ

Поэтому так важно с ним бороться

Естественный воздухообмен

Необходимым условием для естественного обмена воздухом является приточно-вытяжные шахты и воздуховоды, выполняющие функцию баланса притока и оттока вытяжек. Создание тяги по перепаду жара в помещении и вне производится при общих требованиях к герметичности и адекватности пропускных способностей. При этом учитываются требования санитарно–технических норм безопасности.

Необходимо уделить внимание таким вещам как:

  • учёт этажности,
  • относительность положения окружающих сооружений,
  • шумовые эффекты,
  • чистота окружающей среды.

Летом бывает так, что природный порядок вентилирования перестает работать из-за отсутствия перепадов и давления. Соответственно возникает необходимость в принудительной вентиляции. Классический вариант состоит из трех выходов:

  • Приток;
  • Вытяжка;
  • Приточно-вытяжной комплекс экстракции взвесей.

В зависимости от характера воздухообмена существует:

  • местная вентиляция;
  • общего назначения.

К первому классу можно отнести настольные и форточные приборы. Ко второй категории – системы, создающие перемещение газов по всей площади объекта. Настольные и форточные – бесканальные. Во втором случае имеются ввиду канальные устройства с циркуляцией по специальным каналам. Канальный тип бывает как отдельный, так и моноблочный в одном корпусе. Функционально, данные виды делятся на рекуперативные и рециркуляционные (обладают рециркуляцией).

Другие разновидности:

  • с подогревом;
  • со смешанным охлаждением летом;
  • с кондиционером.

Механическая система дымоудаления (крышной вентилятор и пристенный вентилятор)

Механическая система дымоудаления работает от вытяжного вентилятора. Обычно вентиляторы дымоудаления бывают 2 типов — крышной и пристенный. Оба вентилятора выполнять одинаковую роль, но совершенно в разных ситуациях.

Крышной вентилятор дымоудаления устанавливается поверх шахты дымоудаления на кровле и удаляет дым из всех этажей здания, выбрасывая вертикально вверх. Сложность установки такого вентилятора заключается в сложности конструкции монтажной рамы. Долгое время готовых монтажных рам для подобных вентиляторов не производилось и приходилось разрабатывать дополнительный раздел проектной документации, в котором рассчитывались размеры подобной конструкции. Вторая сложность в типе вентиляторов.

Крышной вентилятор механического дымоудаления с вертикальным выросом на монтажном стакане.

Крышной вентилятор предназначен для установки на шахту и должен располагаться на высоте 2 метра от кровли, либо на меньшей высоте, но в таком случае необходимо выполнять кровлю только из негорючих материалов.

Самым простым решением для размещения вентиляторов дымоудаления на кровле, считаю, осевые крышные вентиляторы, либо канальные вентиляторы дымоудаления. Они никак не влияют на гидроизоляцию кровли. Не требует установки дополнительных шахт и рам.

Воздуховоды систем противодымной вентиляции можно выполнять из любого вида стали, но с огнезащитным покрытием. Можно использовать как сварные, так фальцевые и спирально-навивные воздуховоды с единственным требованием: толщина листа стали не менее 0,8 мм.

Пристенный вентилятор, в отличии от крышного, является локальным, т.е. может работать на конкретный этаж, и выбрасывать продукты горения через решетку на фасаде здания. Это позволяет не прокладывать воздуховоды через все этажи на кровлю и не оборудовать вытяжную шахту. Вентилятор размещается на наружной стене этажа, либо с улицы, либо внутри помещения.

Пристенный вентилятор дымоудаления (снаружи здания) с выпускным патрубком, обеспечивающий скорость струи не менее 20 м/с . (СП7 пункт.7.11 г)Пристенный вентилятор дымоудаления (внутри здания). Двигатель в термоизолированном кожухе с дополнительным каналом для охлаждения.

Для дымоудаления с парковок, больших торговых площадей, пристенные вентиляторы скорее всего не подойдут. Максимальный расход удаляемого воздуха составляется 35 000- 38 000 м

3

/ч. Но для дымоудаления из коридоров, небольших офисных и торговых помещений – отличная идея.

Как избежать установки системы дымоудаления?

Основная проблема системы – её размер и стоимость. Минимальное сечение воздуховода дымоудаления 800х500 мм или 1000х300 мм, причем оба размера встречаются крайне редко. Существует ряд мер, которые в законном порядке компенсируют систему дымоудаления, т.е. исключают требования по её установке.

− Общее решение. Обосновать отсутствие дымоудаления расчетом пожарных рисков. Расчет не распространяется на многоквартирные дома, детские учреждения и медицинские стационары.− Для любых помещений до 200 м

2

. Оборудовать систему автоматического пожаротушения. В том числе возможно оборудование модульной системой, что менее затратно и практично.− Для торговых залов, офисов и коридоров более 15 м. Добавить в помещение рекреакции с наружными открывающимися окнами.− Для помещений выставок, архивов, мастерских и книгохранилищ (если не подходит пункт 2) – обосновать отказ от системы дымоудаления отсутствием постоянных рабочих мест согласно проекту архитектурных решений.

Вентиляционная автоматика

Назначение

Автоматизация вентиляции и кондиционирования – первостепенная задача управления.

Автоматизация вентиляционных установок позволяет справиться с непростой задачей их обслуживания.

Чтобы обеспечить это условие, современные инженеры создали специализированные приборы, датчики и механизмы, с помощью которых можно собрать систему управления и защиты вентиляции.

Грамотно созданная система решает целый набор задач, среди которых наиболее существенны такие:

  • Отслеживание, мониторинг и контроль всех параметров системы. Оповещение о неисправностях, опасных режимах, прочих чрезвычайных ситуациях и событиях. Современные средства контроля и мониторинга позволяют оператору в реальном времени отслеживать все важные показатели исправности системы и соответствия режима ее работы желаемому режиму;
  • Анализ данных мониторинга и коррекция работы каждого устройства в отдельности и системы в целом в соответствии с предустановленными параметрами и режимами. Управляющая автоматика собирает данные с помощью датчиков, анализирует их с помощью вычислительных мощностей, принимает решение о внесении изменений в работу и дает сигнал исполняющей механике или устройствам пуска/выключения;
  • Защита водяных контуров обогрева приточного воздуха и клапанов от замерзания в зимнее время. С помощью термостатов система отслеживает температуру калориферов и не дает ей опуститься ниже критического значения;
  • Переключение режимов работы системы в зависимости от времени суток, дня недели, погодных условий, нагрузки на помещение. Автоматика управления вентиляцией по заданной программе, а также на основе данных мониторинга может вводить в эксплуатацию дополнительные силовые установки, отключать работающие вентиляторы или менять скорость их вращения, включать или выключать осушители воздуха и т.д.;
  • Отсечка токов короткого замыкания или иных аварийных режимов для защиты электроники и проводников от опасности перегорания.

Щит автоматики вентиляции в виде настенного шкафа.

Основные узлы

Шкаф управления автоматикой вентиляции.

Следует сразу сказать, что проектирование автоматики систем вентиляции – достаточно сложная инженерная задача, для решения которой необходимо иметь ряд теоретических знаний и определенный опыт.

Также важно знать:

  • структуру подобной системы;
  • ее основные узлы и детали;
  • логику работы и взаимодействия всех ее частей и агрегатов.

Чтобы подобрать наиболее подходящий под конкретные условия комплекс приборов и средств контроля, необходимо знать номенклатуру изделий разных производителей, иметь опыт эксплуатации различных аппаратов, знакомиться с отзывами пользователей, знать модели с точки зрения соотношения цена/качество. Одним словом, нужно быть «в теме».

Спроектировать грамотную вентиляционную автоматику сможет только квалифицированный специалист.

Современные автоматические комплексы оснащены различной аппаратурой, как аналоговой, так и цифровой, включающей три основные группы:

  1. Сенсорные приборы и датчики. Данная группа включает различные средства сбора информации о реальном состоянии системы по различным параметрам: температуре, давлению, влажности воздуха, силе тока и т.п. Полученная информация преобразовывается в электрический сигнал, который поступает на вход контроллера;
  2. Регуляторы и контроллеры. Эта группа приборов осуществляет сбор и анализ данных, полученных от датчиков, и на основе анализа дает команды исполняющей механике или выключателям, которые меняют режим работы системы или ее отдельных частей. Регуляторы могут быть собраны на основании аналоговых логических схем или состоять из цифровой техники с программным обеспечением;
  3. Исполнительная механика. Включает различные приводы, органы регулировки, выключатели и прочие механизмы, которые осуществляют реализацию команд от контроллеров по изменению тех или иных параметров работы вентиляции. Это может быть автоматический клапан приточной вентиляции, сервопривод, выключатель токовой отсечки, регулятор частоты вращения ротора электродвигателя и т.д.

Монтаж автоматики вентиляции лучше доверить специалистам.

Знание логики работы системы не сделает вас специалистом в области автоматики, но у автора статьи такой задачи и не было, ведь все адекватные люди понимают, что чтения статей для получения квалификации явно недостаточно. Однако теперь вы сможете говорить со специалистами на одном языке, понимая, что именно вам предлагают и почему это необходимо.

Различные устройства и узлы систем автоматического управления.

4 Внутреннее устройство

Хотя шкафы автоматики для вентиляции могут выполнять разные задачи и иметь различное конструктивное исполнение, есть несколько основных элементов, присутствующих практически везде. Они необходимы для управления любой такой системой:

  1. 1. Частотный преобразователь используется, чтобы скорость движения лопастей вентилятора менялась плавно и двигатель не перегружался сразу после начала работы.
  2. 2. Пускатель и рубильник — элементы для включения и выключения оборудования.
  3. 3. Контроллер управляет всей системой, его функции можно свободно менять, чтобы выставить все необходимые параметры. Бывает аналоговым и дискретным.
  4. 4. Контактор — механизм для удалённого включения или выключения устройств.
  5. 5. Автоматы применяются для экстренного подключения или отключения тока при возникновении нештатной ситуации, например короткого замыкания.
  6. 6. Защитные механизмы предохраняют от различных аварийных ситуаций.
  7. 7. Реле размыкают или замыкают цепь во время работы системы.
  8. 8. Световые индикаторы. По их свечению можно получить информацию о функционировании оборудования.

Почему пар присутствует в трубопроводе сбора конденсата?

Учитывать пар при проектировании трубопроводов для сбора конденсата на первый взгляд может показаться нелогичным, но на самом деле это необходимо.

Это происходит из-за явления, известного как выпар, которое происходит, когда высокотемпературный конденсат, образовавшийся при высоком давлении, внезапно попадает в систему низкого давления, такую как линия сбора конденсата на выходной стороне конденсатоотводчика. При выпуске через конденсатоотводчик высокотемпературный конденсат со входа теперь подвергается более низкому давлению и, следовательно, содержит слишком много тепловой энергии, чтобы оставаться в жидкой фазе. Из-за этого избыточного физического тепла часть конденсата мгновенно испаряется или «выпаривается». Термин «выпар» просто описывает способ создания пара, в остальном он ничем не отличается от «рабочего пара».

Как количество выпара влияет на размер трубы

По мере увеличения перепада давления в конденсатоотводчике основная часть конденсата превращается в пар, что требует использования трубопроводов возврата конденсата большего диаметра.

При более низких давлениях в трубопроводе сбора конденсата удельный объем насыщенного пара может превышать объем насыщенного конденсата более чем в 1000 раз. Часто это соотношение может составлять более 90:1. Следовательно, объемное соотношение пара к конденсату будет варьироваться в зависимости от количества образовавшегося выпара, что, в свою очередь, может сильно повлиять на требования к выбору размеров труб.

Если мгновенного выпара не происходит, расчет скорости и падения давления в трубопроводе может быть аналогичен расчетам для однофазного водопровода. Однако отсутствие выпара может возникнуть только в том случае, если конденсат значительно переохлажден до температуры, меньшей, чем температура насыщенной воды, связанная с давлением в линиисбора. Если количество выпара велико, требуемый размер трубопровода становится почти идентичным размеру трубопровода пара. Таким образом, проектирование трубопровода для сбора конденсата сначала требует расчета количества выпара, а затем подбора размеров трубы, чтобы учесть удельные объемные отношения как для потока воды, так и для потока пара, с соответствующими расчетными параметрами скорости и перепада давления.

Пример трубопровода для сбора конденсата

Отношение выпара (по массе) для входного давления 1 МПа изб. [10 бар изб., 145 фунт/кв. дюйм изб.] и выходного давления 0,2 МПа изб. [2 бар изб., 29 фунтов/кв. дюйм изб.] составляет примерно 10%, или 1:10, от выпара к конденсату. Однако при сравнении удельных объемов объемное соотношение составляет примерно 62:1. С точки зрения занимаемого пространства внутренняя часть возвратной линии конденсата часто состоит в основном из выпара.

Пример сбора конденсата с использованием испарительного резервуара

Можно установить испарительный резервуар для сбора и повторного использования выпара. Испарительный бак позволяет разделить пар и конденсат, чтобы затем каждый из них смог транспортироваться по отдельному трубопроводу. В таком случае при проектировании трубопровода для жидкого конденсата следует использовать стандарты для трубопровода распределения воды.

Установка испарительного резервуара дает множество преимуществ. Выпар можно использовать для оборудования низкого давления или для предварительного нагрева, в то время как горячий жидкий конденсат без выпара может быть возвращен в котел, где его тепло будет повторно использовано, что повысит общую эффективность.

Конденсат высокой энергии можно использовать либо в котле, либо в другом месте на транспортной линии. Если энергию выпара можно использовать локально, разработчик системы может взвесить относительные преимущества: а) возврата конденсата в котел, используя трубопровод меньшего размера, но требующего насосной системы, или б) использования трубопровода большего размера для возврата конденсата без локализованой системы. Транспортировка быстро вскипающего конденсата на большие расстояния требует определенных конструктивных ограничений для возврата под действием силы тяжести, чтобы минимизировать появление гидравлического удара.

Самостоятельное проектирование СДУ. Пошаговая инструкция.

Учитывая, что стоимость проекта требует достаточно серьезных материальных вложений, сумма которых колеблется от 30000 до 80000 руб, некоторые предприятия и собственники жилья предпочитают самостоятельную разработку проекта СДУ. В таком случае создание проекта включает последовательное выполнение таких операций, как:

  • Оценка параметров здания, среди которых изучение дымопроницаемости материалов, оценка состояния изоляции, наличия и количества окон, материала, из которого изготовлено сооружение, плана эвакуации, этажности постройки, состояния систем вентиляции.
  • Определение и оценка основных критериев в соответствии с методикой, разработанной в 2008 г под названием «Расчетное определение основных параметров противодымной вентиляции зданий». Исходными данными для проведения расчетов помимо параметров материалов будет площадь сооружения и максимальное количество людей в нем находящихся.
  • Выбор типа СДУ и планирование размещения конструктивных элементов схемы, проводимый с учетом реальных особенностей постройки. Проектирование размещения разводки и оптимального расположения датчиков, контролирующих уровень дыма, проводимый с учетом локализации огнестойких препятствий.
  • Разработка и выпуск рабочей версии проекта СДУ с чертежами систем и планами разводок для каждого этажа.
  • Внесение изменений и проведение оптимизации принятых решений как с точки зрения материальных затрат, так и с позиций удобства реализации проекта и обеспечения безопасности.

Некоторые собственники, не готовые брать на себя ответственность за жизнь и здоровье нанятых рабочих или близких людей обращаются за разработкой проекта в специальные инжиниринговые компании, специализирующиеся и на реализации и проверке работоспособности предложенного проекта.

Система дымоудаления в действии:

Оборудование для системы дымоудаления в общественных зданиях, включает в себя вентиляторы, обеспечивающие подпор воздуха, клапана, обеспечивающие работу приточной и вытяжной вентиляции, люки, окна, двери и шахты для вывода гари, датчики концентрации дыма и температуры внутри комнаты.

Схема, обеспечивающая устранение продуктов сгорания проектируется совместно с планированием систем, обеспечивающих регуляцию воздухообмена в здании. Однако при появлении возгорания, приоритет отдается работе приспособлений, обеспечивающих устранение веществ и газов, образующихся при горении.

При обнаружении возгорания, автоматика обеспечивает отключение вентиляции, обеспечивающей воздухообмен с одновременным закрытием огнезадерживающих и открытием клапанов, обеспечивающих устранения дыма, после чего вентилятор обеспечивает подпор воздуха в коридорах и на лестничных маршах.

Основные достоинства поплавковых конденсатоотводчиков

  • Поплавковый конденсатоотводчик в своей рабочей характеристике следует линии насыщения пара, а это значит, что он отводит конденсат в насыщенно горячем состоянии и без его накопления.
  • Режим работы поплавкового конденсатоотводчика непрерывный, зависящий от уровня конденсата.
  • Поплавковый конденсатоотводчик способен отводить большое количество конденсата без потери пара.
  • Поплавковый конденсатоотводчик может применятся в случаях необходимости быстрого опорожнения, а также как регулятор уровня в емкостях разгрузки и охладителях конденсата.
  • Нестабильность давления и расхода, а также увеличение противодавления не влияют на его работу
  • В случае изменения условий перепада давления или количества конденсата, превышающих пропускную способность конденсатоотводчика, имеется возможность произвести замену регулирующего элемента на другой, без замены всего конденсатоотводчика.
  • Без воздухоотводящего элемента поплавковые конденсатоотводчики могут использоваться для отвода конденсата из систем сжатого воздуха и газов.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Климат в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector