Теплый пол: сколько он «съест» электричества и как экономить?

Инструкция

Зная общие теплопотери ограждающими конструкциями помещения, вначале следует отнять от этого значения величину потерь через полы, поскольку при устройстве теплого пола их не будет. Полученную величину Q (Вт) надо разделить на площадь комнаты F (м2) для того, чтобы узнать удельную теплоотдачу, которую должна обеспечивать система водяного пола q (Вт/м2):

q=Q/F.

Рисунок 2. Номограмма определения удельной теплоотдачи теплого пола с ковровым покрытием или паркетом.

Дальше расчет выполняется графическим способом по номограммам, представленным на рис. 1, 2, 3. Следует выбрать ту номограмму, которая соответствует вашему напольному покрытию. Взяв получившееся значение q, откладываемое с левой стороны графика, нужно определить температуру поверхности пола, которая обеспечит необходимое поступление тепла в помещение. Например, если удельная теплоотдача должна составлять 99 Вт/м2, а покрытие синтетическое (линолеум), то по номограмме на рис. 1 необходимая температура поверхности — +29⁰С, что неприемлемо.

Тогда по той же номограмме принимается максимально допустимая температура — +26⁰С. Если от этого значения (располагается на правой шкале графика) вести горизонтальную линию, то она пересечет несколько диагональных графиков, отражающих интервал укладки труб теплого пола. Подбирается оптимальное значение, в данном примере подойдет 0,2 м. От места пересечения горизонтальной линии температуры и диагонального графика интервала укладки проводится вертикальная линия вниз. Она укажет на величину средней разности температур, в приведенном примере она составит 21⁰С. Дойдя по горизонтальной линии до самого конца, можно выяснить реальную удельную теплоотдачу контура отопления, здесь получится 68 Вт/м2.

Теперь можно рассчитать параметры теплоносителя для системы. Определяется его средняя расчетная температура:

tт=∆tср+tпом.

В этой формуле:

Рисунок 3. Номограмма определения удельной теплоотдачи теплого пола с толстым ковровым покрытием или толстым паркетом.

  • tт — средняя расчетная температура воды в системе, ⁰С;
  • ∆tср — средняя разница температур, определенная ранее по номограмме, ⁰С;
  • tпом — необходимая температура воздуха в помещении, ⁰С.

Если подставить те же цифры из рассматриваемого примера и принять значение температуры в комнате равным 20⁰С, результат будет — +41⁰С. Ранее были указаны стандартные температурные графики, которые следует принимать для теплого пола, под результат примера методом подбора определен график 45/35⁰С.

Поскольку температура поверхности была принята меньше требуемой для отопления комнаты, нужно вычислить, какова разница между потоком, который будет поступать от теплого пола, и необходимым изначально количеством теплоты для компенсации потерь через наружные ограждения. Для этого нужно площадь помещения умножить на удельную теплоотдачу от контура напольного отопления:

Qп=F×qп.

Если для примера принять значение площади равным 40 м2, то величина теплового потока будет:

68 Вт/м2х40 м2=2720 Вт.

Изначальная же расчетная величина q составляла 99 Вт/м2, а общая — 3960 Вт, разница — 1240 Вт. Это недостающее количество теплоты надо подать в комнату другим, традиционным способом отопления, то есть радиаторами.

Определив расчетный температурный график подачи теплоносителя (в примере — 45/35⁰С), интервал укладки трубопроводов отопительного контура (в примере принят 0,2 м), надо рассчитать протяженность трубы:

Схема подключения теплого пола.

L=F/a, где:

  • L — длина трубы, м;
  • а — интервал ее укладки, м;
  • F — площадь поверхности теплого пола, м2.

В примере: 40 м2/0,2 м=200 м. К этой протяженности необходимо прибавить длину труб, которые идут до помещения от распределителя, здесь для примера пусть будет 10 м. Получилось 210 м, что является слишком большим контуром, который будет иметь очень высокое гидравлическое сопротивление. Нужно разделить систему на 2 контура, тогда длина трубы составит 105 м, это максимально допустимое значение. Другой вариант — пересмотреть интервал укладки, увеличить его, тогда материала трубы понадобится меньше, но и отдача теплого пола станет ниже. В результате придется наращивать мощность радиаторов.

Как рассчитать теплый пол электрический

В целом, система подогрева пола состоит из нескольких элементов. Это терморегулятор, который помогает управлять уровнем нагрева полов, термодатчик, следящий за тем, насколько нагреты полы, нагревательный элемент, а также силовой кабель для подключения к электросети всего этого оборудования.

Терморегулятор обычно устанавливается на стену, к нему подключаются все провода. Сам теплый пол, а также термодатчик обустраиваются под напольным покрытием (в стяжку или же на ее поверхности в зависимости от типа системы – нагревательный мат, ИК пленка или кабель нагревательный).

Сенсорный программируемый терморегулятор

Для обустройства кабельного обогрева используется одно- или двужильный кабель. Первый является самым простым, но при этом сложным в работе, хоть и дешевым. Рассчитать все параметры для него будет довольно сложно, так как оба конца кабеля нужно выводить в одно место. Да и электромагнитное поле от него образуется обширное.

Двужильный кабель для теплого пола

Проще купить двужильный кабель, который, хоть и стоит немного дороже, все же за счет особого расположения проводов прост в установке и работе.

Формулы расчета для электропола

Определить мощность системы теплого электропола просто. Для этого мощность 1 м2 выбранной системы достаточно умножить на площадь, которую он будет обогревать. Кстати, в приобретаемом комплекте уже отмерено и отмечено количество используемого кабеля. Расстояние между витками проводов должно быть 5-20 см. Точно его вычислить можно по формуле h = Sх100/L, где h – искомое значение ширины шага, L – длина кабеля, а S – площадь комнаты.

Рассчитываем электрический теплый пол

Принцип расчета систем теплых полов

Элементы конструкции

Для расчета понадобиться учесть устройство электрического теплого пола. Схема данного вида обогрева включает в себя:

  • нагревательный элемент;
  • силовой кабель;
  • температурный датчик нагрева;
  • терморегулятор.

Термодатчики осуществляют контроль температуры нагрева, нагревательные элементы соответственно осуществляют обогрев. Эти детали монтируются непосредственно в пол, и при помощи монтажных (силовых) кабелей соединяются с терморегулятором, который задает режим работы.

В качестве нагревательного элемента могут применяться:

  • нагревательный кабель;
  • инфракрасное пленочное покрытие;
  • сетчатый мат.

Наиболее требовательна к технологии укладки система теплого пола с применением нагревательного кабеля, а самой неприхотливой конструкцией считается пленочный пол.

Для обустройства кабельной системы теплого пола применяются нагревательные кабели. Одножильный отличается дешевизной относительно двухжильного, но при этом расчет и установка его значительно сложнее. Электрический пол с применением одножильного кабеля создает электромагнитное поле по всей площади укладки, характеризующееся значительной интенсивностью. По этой причине такой вид обогрева не рекомендуется для жилых помещений.

Двухжильный термокабель укладывается проще, благодаря направленному движению тока в оба направления индукционное воздействие такой конструкции не превышает допустимых норм. Для расчета электрического теплого пола рекомендуется учитывать геометрию площади комнаты.


Двухжильный кабель

Общие правила расчета

Расчет мощности обогрева зависит от площади помещения, его типа и рабочего режима. Каждый из указанных параметров оказывает определенное влияние на показатель мощности.

Площадь обогреваемого помещения

При монтаже системы обогрева учитывается только пространство, не занятое мебелью и бытовой техникой. Для расчета также учитывается только свободное пространство. Площади под мебелью и техникой не учитываются по следующим причинам:

  • недостаточная циркуляция воздуха под предметами приводит к перегреву;
  • избыток тепла отрицательно сказывается на эти объекты.

Для расчета площади из общего значения отнимают суммарную площадь, занятую предметами интерьера.


Как расположить теплый пол под мебелью

Режим обогрева и тип помещения

Расчет электрического теплого пола напрямую зависит от условий эксплуатации. Важная роль принадлежит назначению системы обогрева: будет ли она единственным или вспомогательным источником отопления.

Чтобы рассчитать теплый пол рекомендовано пользоваться усредненными значениями мощности. Ее показатели составят от 150 до 180 Вт/м2 в случае основного источника. Обогреваемая площадь в этих условиях должна составлять не менее 70% от общей.

Система, применяемая в качестве дополнительного источника допускает значения от 110 до 140 Вт/м2 .

Показатели мощности зависят от теплопроводности помещения. Учитывается этаж, назначение и другие аспекты. Так, например, для кухни достаточно использовать в расчете 120 Вт/м2, а для остекленной лоджии понадобится мощность в 180 Вт/м2.

Помещения, расположенные на первом этаже, требуют повышенной мощности обогрева примерно на 15-20% от средних значений.

Для эффективности системы необходимо произвести дополнительное утепление помещения во избежание потерь тепла.

Воздушные теплообменники

Сегодня одними из самых распространенных теплообменников являются оребренные трубчатые теплообменники. Их еще называют катушками. Везде, где они не установлены, начиная от фанкойлов (от англ. Fan + coil, то есть «вентилятор» + «змеевик») во внутренних блоках сплит-систем и заканчивая гигантскими установками-утилизаторами (отвод тепла из горячего дыма и передачи его по мере необходимости в отопительные системы) в котельных ТЭЦ. Вот почему конструкция змеевикового теплообменника зависит от области применения, в которой теплообменник будет эксплуатироваться. Промышленные воздухоохладители (VOP), устанавливаемые в камерах быстрой заморозки мяса, низкотемпературных морозильных камерах и других системах охлаждения пищевых продуктов, требуют определенных конструктивных особенностей в своей работе. Расстояние между пластинами (пластинами) должно быть как можно большим, чтобы увеличить время непрерывной работы между циклами оттаивания. С другой стороны, испарители для центров обработки данных (центров обработки данных) делаются максимально компактными, ограничивая пространство до минимума. Такие теплообменники работают в «чистых зонах», окруженных фильтрами тонкой очистки (до класса HEPA), поэтому такой расчет трубчатого теплообменника делается с упором на минимизацию габаритов.

Расчеты

Итак, переходим к основному вопросу нашей статьи: как рассчитать теплый пол?

  • В первую очередь необходимо рассчитать длину трубы, которая будет использована в системе отопления. Для этого есть специальная простая формула, где отапливаемая площадь помещения делится на шаг, который умножается на константу – 1,1. Что это за показатель 1,1? По сути, это расходы трубы на повороты контура.
  • Второй – определяем мощность теплого пола. Так как все расчеты проводятся относительно полезной площади обогрева, то перед тем как приступить к этим расчетам, необходимо обозначить эту полезную площадь. По сути, это пол, на котором не будет стоять мебель и другие элементы декора. С электрическими теплыми полами такая площадь определяется как 70% пропорция к общей площади помещения.

А вот теперь возвращаемся к нашему первому определению, в качестве какого источника тепла теплый пол будет использован вами (в качестве основного или вспомогательного)? Если он будет являться основной системой отопления, то для расчета используется удельная мощность, равная 150-180 Вт/м². Если как вспомогательная система, тогда 110-140 Вт/м².

Тип укладки контура

Но и это еще не все. Большое значение имеет и тип помещения, где устанавливается теплый пол. Внизу расположена таблица, где нами показаны помещения и рекомендуемые в них теплые полы относительно используемой мощности.

Помещение Мощность теплого пола, Вт/м²
Жилые комнаты 110-150
Ванная 140-150
Балкон или лоджия (присоединенные) 140-180

Зависимость получается прямая: чем ниже теплоизоляционные качества помещения, тем большей мощности в нем должны укладываться теплые полы. Необходимо добавить сюда и наличие дополнительного источника тепла. К примеру, на кухне можно устанавливать теплые полы из расчета 110-120 Вт/м². Правда, надо заметить, что все показатели мощности, приведенные в таблицы, даны с определенным запасом в размере до 25%. И еще не стоит забывать об этажности расположения квартир, если дело касается электрических теплых полов в городских квартирах. Если это первый этаж, то стоит добавить ко всем цифровым показателям процентов пятнадцать. Особенно, если в многоквартирном доме нет отапливаемого подвала.

Схема расположения контуров

Пример расчета

Давайте рассмотрим небольшой пример, как можно правильно рассчитать мощность водяного теплого пола, уложенного на кухне площадью 15 м². Будем считать, что кухня находится в частном доме, чтобы не противоречить утверждению специалистов – водяные теплые полы в городских квартирах, где используются централизованные сети отопления, не устанавливаются.

Итак, в первую очередь определяется полезная площадь. Из общей площади вычитаются размеры холодильника, варочной плиты, раковины и различной мебели. Пусть приблизительно это будет 5 м².

Общие тепловые потери по-любому будут рассчитываться с учетом общей площади пола, то есть 15 кв.м. Если брать стандартную теплоотдачу любой системы отопления, а это 100 Вт на 1 м², то можно получить, что теплопотери нашей кухни составляют 1500 Вт. Вот такую мощность должен вырабатывать теплый пол. Добавляем сюда коэффициент запаса, который варьируется в пределах 1,2-1.3. Возьмем минимальный, поэтому теплопотери составляют 1800 Вт.

Теплый пол на кухне

Теперь высчитываем длину контура. Эта формула нам известна, о ней было написано выше. Для нее необходима полезная площадь – 10 м², шаг укладки – выбираем, к примеру, 20 см, и дополнительный коэффициент 1,1. В конечном итоге получаем – 45 м.

Теперь, чтобы определить максимальную мощность самого теплого пола, надо общие теплопотери помещения разделить на полезную площадь: 1800:10=180 Вт/м². Если уменьшить шаг укладки, то можно снизить удельную мощность контура. При увеличении полезной площади также увеличивается и мощность. Варьируя различными размерными показателями, можно изменять чисто технические характеристики системы отопления. А от этого будет зависеть и стоимость самой конструкции.

Влияющие на расход электрической энергии факторы

При определении затрат на электроэнергию следует учитывать такие моменты:

  1. Утепление основания пола. Укладка системы на черновую стяжку без использования теплоизоляционных материалов способствует ненужного расхода энергии на обогрев нижней части пола. При утеплении основания экономится более 15 процентов электричества.
  2. Площадь пола, занимаемая устройством обогрева. В больших помещениях значительно увеличивается потребление электроэнергии. При этом для обогрева объемных помещений требуется более высокая мощность отопительной системы.
  3. Тип отопительного оборудования. С каждым годом изготавливаются различные модели теплых полов с отличительными техническими показателями. В экономическом плане первое место занимают нагревательные маты. Это обусловлено их расположением сразу под финишным покрытием и не требуется расхода электричества на обогрев слоя клеевого или цементного раствора.
  4. Общая теплоизоляция помещения. При отсутствии утепления комнаты затрачивается больше энергии на ее прогрев. После того как улучшить теплоизоляцию помещения часто можно увидит существенные изменения расхода электричества.
  5. Размещение квартиры. Если помещение расположено на первом этаже, то нижняя его часть всегда холодная. Поэтому требуется больше мощности на обогрев пола. Верхние этажи подогреваются нижними квартирами, и половое покрытие остывает в таких случаях довольно медленно.
  6. Наличие основного обогрева. При использовании системы теплого пола как дополнительного устройства обогрева заметно снижается расход электроэнергии. Это объясняется тем, что обогрев пола функционирует только в случаи необходимости, а за тепло в помещении отвечает основное отопительное оборудование.

Для уменьшения потребления электроэнергии нужно устанавливать терморегуляторы

Расчеты труб для водяного теплого пола (длина, диаметр, шаг и способы укладки и трубы)

Ограниченная длина низконапорного отопительного контура связана эффектом «замкнутой петли», при котором потеря давления превышает 20 кПа (0,2 бара). Увеличение мощности насоса, в данном случае не выход — сопротивление будет возрастать пропорционально увеличению давления.

Теплые водяные полы лучше обустраивать в помещениях, где проживают постоянно, а не пользуются время от времени

Расчетная длина труб для теплого пола определяется по формуле:

L = (S/a×1,1) + 2c, (м), где

L — длина контура, м;

S — площадь, контура, м²;

a — шаг укладки, м;

1,1 — увеличение размера шага на изгиб (запас);

2c — длина подводящих труб от коллектора до контура, м.

Схема обустройства теплого водяного пола в бетонной стяжке

Обогревательный контур прокладывают, отступив 0,3 м от стен. Учитывают открытую площадь пола, которая передает равномерный поток излучения. Специалисты не рекомендуют монтировать отопительный контур в местах расстановки мебели. Длительная статическая нагрузка может стать причиной деформации труб.

При большой площади помещения отопительный контур разбивают на сектора. Основные правила зонирования — соотношение длин сторон 1/2, обогрев площади одного сектора не более 30 м² и соблюдение одинаковых длины и диаметра для цепей одного коллектора.

Температура теплоносителя в контуре теплого пола зависит от тепловой нагрузки, шага укладки, диаметра труб, толщины стяжки и материала напольного покрытия

Таблица 2. Соотношение длин и диаметров труб контура:

Диаметр, мм Материал трубы Рекомендованная длина контура, м
16 металлопластик 80 ÷ 100
18 сшитый полиэтилен 80 ÷ 120
20 металлопластик 120 ÷ 150

Диаметр и шаг трубной раскладки зависит от тепловой нагрузки, назначения, размера и геометрии комнаты. Зона распространения тепла пропорциональна радиусу трубы. Труба обогревает участок пола в каждую сторону от центра трубы. Сбалансированный шаг труб: Dy 16 мм — 0,16 м; 20 мм — 0,2 м; 26 мм — 0,26 м; 32 мм — 0,32 м.

Конструкция металлопластиковых труб для теплого водяного пола

В паспортных данных изделий указывают максимальную пропускную способность труб, на основании которой вычисляют линейное изменение давления. Оптимальное значение скорости теплоносителя в трубах водяного отопления 0,15 ÷ 1 м/с.

Таблица 3. Зависимость шага от площади и нагрузки сектора:

Диаметр, мм Расстояние по осям (шаг труб), м Оптимальная нагрузка, Вт/м² Общая (или разбитая на участки) полезная площадь помещения, м²
16 0,15 80 ÷ 180 12
20 0,20 50 ÷ 80 16
26 0,25 20
32 0,30 меньше 50 24

Варианты укладки труб: простые, угловые или двойные петли (змейки), спирали (улитки). Для узких коридоров и помещений неправильной формы используют укладку змейкой. Большие площади разбивают на сектора. Допускается комбинированная укладка: в краевой зоне труба выкладывается змейкой, в основной части — улиткой.

Варианты укладки труб водяного теплого пола

По периметру, ближе к наружной стене и возле оконных проемов, проходит подача контура. Шаг укладки в краевых зонах может быть меньше расстояний между трубами в центральной части комнаты. Подключение усилений краевой зоны необходимо для повышения мощности теплового потока.

В расчетах труб для водяного теплого пола используют диаметры 16, 20, 26, 32 мм.

Укладка труб водяного теплого пола по спиральной схеме снижает гидравлическое сопротивление

Для систем теплых водяных полов применяют гофрированный, нержавеющий стальной, медный, металлопластиковый, сшитый полиэтиленовый трубопровод. Гофрировать трубу для теплых полов стали относительно недавно для того, чтобы облегчить монтаж конструкции и сократить расход на поворотные увеличения длины.

Полипропиленовый трубопровод обладает большим радиусом изгиба, поэтому в системах теплых полов применяется редко.

Наиболее подходящие напольные покрытия

Теплый пол может устраиваться с применением различных напольных покрытий. Однако для каждого помещения выбор должен делаться после ознакомления с эксплуатационными особенностями.

Керамическая плитка больше подходит для ванных комнат, так как способна выдерживать воздействие влажной среды. Чаще всего заливается стяжка, в которую внедряются трубопроводы или кабели системы, а сверху укладывается кафель. При наличии дополнительного обогрева плитка теряет свой главный недостаток – холодную поверхность.

Проведение работы по устройству обогрева пола в ванной комнате

Для кухни неплохим вариантом отделки пола может стать линолеум. Он часто выбирается вместе с пленочным полом, выделяющим инфракрасное излучение. Элементы в данном случае размещаются сверху стяжки. На них укладывается фанера, ДСП или ОСП. Сверху расстилается линолеум.

Таким же образом создается обогревательная система в комбинации с ламинатом. Однако подкладывать дополнительную основу не требуется. Панели могут монтироваться поверх пленки.

Пример укладки панелей ламината поверх пленочного пола

При необходимости можно внедрить дополнительное отопление непосредственно под ковролин. Однако его лучше использовать в спальне для увеличения теплового эффекта. Основной минус покрытия – сложность в удалении загрязнений.

Водяной пол

Водяной тёплый пол — трубопровод, размещённый по схеме «змейка» или «улитка», по которому циркулирует теплоноситель. В комплект входит циркуляционный насос и коллекторная группа. Чаще конструкция заливается бетонной стяжкой, поэтому имеет большой вес.

Модель будет выгодной в плане экономичности для частных строений с большими площадями, особенно при наличии автономного котла. В квартирах многоэтажного дома такие полы установить не возможно, так как требуется разрешение на их монтаж, и подключение к центральному отоплению.

Получить такое разрешение трудно, так как это отрицательно сказывается на работе отопительной системы всего дома. Кроме того, есть риск подтопления соседей, в случаи протечки трубопровода.

Плюсы гидрополов — эффективность и экономичность.  Они не сушат воздух, и могут быть единственным отопительным прибором в доме. При их возведении не нужно продумывать расстановку мебели заранее, так как на них можно ставить тяжёлые предметы. Кроме того, в плане пожарной опасности, они являются самыми безопасными. Срок службы 50 лет.

Какой пол лучше выбрать: электрический или водяной?

На каждый тип тёплого пола возложены свои функции, с которыми они прекрасно справляются.

Выбирать водяное отопление следует при наличии больших площадей, более 100 м2. Несмотря на дорогой монтаж водяного пола, он быстро окупается в процессе эксплуатации. Средний срок окупаемости составит 3 года. А вот эксплуатация электрического отопления для больших помещений выйдет намного дороже.

Для обогрева небольших площадей лучше выбирать электрические полы. Они проще в установке, особенно инфракрасные, и их монтаж обойдётся недорого.

Кроме того, надо учитывать единственным источником тепла будет система или нет. Если он будет основным отоплением, то лучше выбирать водяную или мощную кабельную конструкцию, они качественные и надёжные. А для дополнительного обогрева идеально подойдет плёнка или маты.

Подсчет потребления электрического пола

Отопление ЭТП эффективно, но слишком высокое потребление энергии делает его нерентабельным. Рассчитывают расходы, учитывая режим работы и тип напольного обогревателя, иначе данные будут недостоверными.

Чтобы рассчитать примерное энергопотребление системы обогрева необходимо начать с определения общей мощности теплого пола, установленного в помещении (Робщ):

Робщ = Sоб * Рmax;

где:Sоб – обогреваемая площадь помещения, свободная от мебели;Рmax – максимальная мощность теплого пола на 1 м2.

Общая мощность (Робщ) изначально уже указывается производителем (например, мощность нагревательного мата Thermo TVK-130 составляет 130 Вт/м2).

Пример:

Площадь помещения 10 м2, нагревательный мат DEVI установлен на 6 м2. Максимальная мощность (Рmax), установленного теплого пола 150 Вт/м2.

Робщ = Sоб * Рmax = 6 м2 * 150 Вт/м2 = 900 Вт

Вид используемого терморегулятора

Мощность теплого пола, расходуемая в течении дня (Рд), зависит от вида терморегулятора :

  • с механическим термостатом теплый пол в среднем работает 12 часов в день;
  • с программируемым в среднем 6 часов в день, благодаря многочисленным режимам по контролю работы теплого пола.

Рд = t * Pобщ;

где:t – время работы теплого пола в день.

Пример (для теплого пола):

Нагревательный мат DEVI, установленный в помещении, обладает общей мощностью (Робщ) 900 Вт.

1) с механическим терморегулятором:

Рд = t * Pобщ = 12 ч * 900 Вт = 10 800 Вт = 10,8 кВт

2) с программируемым терморегулятором:

Рд = t * Pобщ = 6 ч * 900 Вт = 5 400 Вт = 5,4 кВт

Для оценки полученного результата необходимо провести сравнение данных теплого пола с энергопотреблением среднестатистического конвектора. Для подобных обогревательных приборов существуют только непрограммируемые терморегуляторы, обладающие функцией включения/отключения.

Пример (для конвектора):

В помещении установлен конвектор мощностью 1 500 Вт. Прибор находится во включенном состоянии в среднем 12 часов в день.

Рд = t * Pобщ = 12 ч * 1 500 Вт = 18 000 Вт = 18 кВт

Полученный результат на 8 кВт больше мощности расходуемой теплым полом с механическим терморегулятором и на 12,6 кВт больше показателя с программируемым терморегулятором.

Определим стоимость работы теплого пола в месяц.

Примерная стоимость 1 кВт в России – 3 руб. Среднее взятое количество дней в месяце – 30. Таким образом:

Стоимость работы теплого пола в месяц = Рд * 30 дней * 3 руб

Пример (для теплого пола):

1) Теплый пол с механическим терморегулятором:Мощность, расходуемая нагревательным матом DEVI, установленным в помещении, достигает 10,8 кВт.

Стоимость работы т.п. в мес. = Рд * 30 дней * 3 руб = 10,8 кВт * 30 дней * 3 руб = 972 руб

2) Теплый пол с программируемым терморегулятором:Мощность теплого пола составляет 4,68 кВт.

Стоимость работы т.п. в мес. = Рд* 30 дней * 3 руб = 5,4 кВт * 30 дней * 3 руб = 486 руб

Пример (для конвектора):

Мощность, расходуемая конвектором в день, достигает 18 кВт.

Стоимость работы конвектора в мес. = Рд* 30 дней * 3 руб = 18 кВт * 30 дней * 3 руб = 1 620 руб

Очевидно, что для достижения комфортной температуры в помещении, теплый пол работает эффективнее конвекторов. Являясь теплоаккумулирующей системой, теплый пол даже в выключенном состоянии сохраняет тепло (особенно в случае с толстой стяжкой).

Заключение и выводы

Следует отметить, что теплый пол, запитанный от центрального отопления, можно сделать своими руками, однако при этом желательно соблюдать предварительно подготовленную схему. Учесть нужно и то, что установка альтернативных систем обогрева пола может обойтись дешевле, а также занять гораздо меньше времени.

Монтаж представленной конструкции требует знаний и практических навыков. Неправильно настроенная система может привести к неравномерному распределению тепла в нескольких квартирах сразу. У кого-то тепло вообще может пропасть. Поэтому лучше отдать предпочтение все-таки электрической системе подогрева.

Вот и все особенности подключения водяной конструкции теплого пола. Нужно не забывать, что использование такой системы является незаконным, поэтому при возможности, нужно сделать ее незаметной для проверяющих органов. Оставляйте ваши комментарии, тем более, что тема для обсуждения очень интересная. И напоследок, видео подключения через отдельный теплообменник — так сказать, самая идеальная схема монтажа:

Сегодня, монтаж нагревательного гидравлического контура в половое покрытие, среди наших соотечественников пользуется небывалой популярностью. Причиной этому является крайне неудовлетворительная работа классического радиаторного отопления с централизованной подачей теплоносителя. Ажиотаж вокруг технологии «теплый пол» заставляет многих «умельцев» идти на прямой запрет властей, самовольно монтируя отопление в квартире по полу, нарушая при этом тепловой баланс и увеличивая гидравлическое сопротивление в системе отопления (СО) всего дома.

Законные пути реализации водяного теплого пола в квартирах многоквартирных домов есть и подключить систему теплый пол от центрального отопления можно. В этой публикации будут рассмотрены несколько рабочих схем, которые не вызовут гидравлический и тепловой дисбаланс в СО.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Климат в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: