Тысяча кубометров природного газа (энергетический эквивалент природного газа) → киловатт час (квт*час, сгс и внесистемные единицы)

Теплота сгорания топлива

Всякое топливо, сгорая, выделяет теплоту (энергию), оцениваемую количественно в джоулях или в калориях (4,3Дж = 1кал). На практике для измерения количества теплоты, которое выделится при сгорании топлива, пользуются калориметрами — сложными устройствами лабораторного применения. Теплоту сгорания называют также теплотворной способностью.

Количество теплоты, получаемой от сжигания топлива, зависит не только от его теплотворной способности, но и от массы.

Для сравнения веществ по объёму энергии, выделяемой при сгорании, более удобна величина удельной теплоты сгорания. Она показывает количество теплоты, образуемой при сгорании одного килограмма (массовая удельная теплота сгорания) или одного литра, метра кубического (объёмная удельная теплота сгорания) топлива.

Принятыми в системе СИ единицами удельной теплоты сгорания топлива считаются ккал/кг, МДж/кг, ккал/м³, Мдж/м³, а также их производные.

Энергетическая ценность топлива определяется именно величиной его удельной теплоты сгорания. Связь между количеством теплоты, образуемой при сгорании топлива, его массой и удельной теплотой сгорания выражается простой формулой:

Q = q · m, где Q — количество теплоты в Дж, q — удельная теплота сгорания в Дж/кг, m — масса вещества в кг.

Для всех видов топлива и большинства горючих веществ величины удельной теплоты сгорания давно определены и сведены в таблицы, которыми пользуются специалисты при проведении расчётов теплоты, выделяемой при сгорании топлива или иных материалов. В разных таблицах возможны небольшие разночтения, объясняемые, очевидно, несколько отличающимися методиками измерений или различной теплотворной способностью однотипных горючих материалов, добываемых из разных месторождений.

Удельная теплота сгорания некоторых видов топлива

Наибольшей энергоёмкостью из твёрдых видов топлива обладает каменный уголь — 27 МДж/кг (антрацит — 28 МДж/кг). Подобные показатели имеет древесный уголь (27 МДж/кг). Намного менее теплотворен бурый уголь — 13 Мдж/кг. Он к тому же содержит обычно много влаги (до 60 %), которая, испаряясь, снижает величину общей теплоты сгорания.

Торф сгорает с теплотой 14-17 Мдж/кг (зависит от его состояния — крошка, прессованый, брикет). Дрова, подсушенные до 20 % влажности, выделяют от 8 до 15 Мдж/кг. При этом количество энергии, получаемой от осины и от берёзы, может разниться практически вдвое. Примерно такие же показатели дают пеллеты из разных материалов — от 14 до 18 Мдж/кг.

Намного меньше, чем твёрдые, различаются величинами удельной теплоты сгорания жидкие виды топлива. Так, удельная теплота сгорания дизельного топлива — 43 МДж/л, бензина — 44 МДж/л, керосина — 43,5 МДж/л, мазута — 40,6 МДж/л.

Удельная теплота сгорания природного газа составляет 33,5 МДж/м³, пропана — 45 МДж/м³. Наиболее энергоёмким топливом из газообразных является газ водород (120 Мдж/м³). Он весьма перспективен для использования в качестве топлива, но на сегодняшний день пока не найдены оптимальные варианты его хранения и транспортировки.

Сравнение энергоемкости различных видов топлива

При сравнении энергетической ценности основных видов твёрдого, жидкого и газообразного топлива можно установить, что одному литру бензина или дизтоплива соответствует 1,3 м³ природного газа, одному килограмму каменного угля — 0,8 м³ газа, одному кг дров — 0,4 м³ газа.

Теплота сгорания топлива — это важнейший показатель эффективности, однако широта распространения его в сферах человеческой деятельности зависит от технических возможностей и экономических показателей использования.

Топливо и его горение

Основным источником энергии для металлургической промышленности является топливо.

Под топливом понимают вещество, горение которого сопровождается выделением значительного количества тепла и которое отвечает следующим требованиям:

  1. запасы должны быть достаточными для того, чтобы их было экономически выгодно добывать и попользовать;

  2. продукты сгорания должны легко удаляться из  зоны горения;

  3. продукты сгорания должны быть безвредны для окружающего мира и самих тепловых устройств;

  4. процесс горения должен быть легко управляем.

Этим требованиям отвечают органические соединения, содержащие углерод С и водород Н и их соединения.

Все виды топлива подразделяют на естественное и искусственное, каждое из которых в свою очередь подразделяются на твердое, жидкое, газообразное.

Химический состав топлива.

Топливо состоят из горючей массы и балласта. К горючим компонентам относятся С, Н, S (сера органическая и колчеданная). В состав топлива входят азот N (не горит, теплоноситель), кислород О (окисляет горючие компоненты).

Кроме этого в топливе всегда присутствуют вода и зола. Вода, содержащаяся в топливе, подразделяется на гигроскопическую, химически связанную и внешнюю, которая механически удерживается в топливе и теряется при сушке.

Зола – это негорючая минеральная часть топлива, состоящая из Al2O3, Fe2O3, Si2O3, CaO и др.

Элементарный анализ топлива.

Индекс

Состав

C

H

O

N

S

A

W

О

органическая масса

     

Г

горючая масса

   

С

сухая масса

 

Р

рабочая масса

Состав рабочего топлива:

СР + HР + OР + NР + SР + AР + WР = 100%

Пересчет состава топлива с любой массы на рабочее топливо выполняется по одному из следующих выражений:

Теплота сгорания топлива.

Количество выделившегося тепла при сжигании топлива связано с химическим составом топлива.

Количество тепла, которое выделяется при сжигании единицы топлива, называется теплотой сгорания топлива Q. Ее размерности: кДж/кг (ккал/кг), кДж/м3 (ккал/м3) или кДж/кмоль (ккал/кмоль).

В технике различают высшую Qв и низшую Qн теплоту сгорания топлива. Под низшей теплотой сгорания понимают то количество тепла, которое выделяется при сжигании единицы топлива до продуктов полного сжигания при условии, что вода, содержащаяся в продуктах сгорания, находится в виде пара, охлажденного до 20оС.

Теплота сгорания топлива определяется по следующим формулам:

для твердого и жидкого топлива:

для газообразного:

,

где CP, HP, CO, H2 и т.д. – составляющие топлив, %;

4, 187кДж = 1ккал.

Условное топливо.

Для удобства планирования, учета и сравнения различных видов топлива введено понятие условного топлива, которое характеризуется низшей теплотой сгорания

.

Для перевода натурального топлива в условное находится эквивалент данного топлива:

для твердого и жидкого:

для газообразного:

.

Перерасчет расхода натурального топлива Вр на условное Ву осуществляется по формуле:

Газообразное топливо.

Газообразное топливо по сравнению с твердым и жидким топливом обладает следующими преимуществами:

  1. возможностью лучшего смешения газа с воздухом и, следовательно, сжиганием с меньшим избытком воздуха;

  2. легкостью подогрева перед сжиганием;

  3. отсутствием золы;

  4. транспортабельностью и удобством учета расхода газа;

  5. простотой обслуживания горелочных устройств.

Недостатки: взрывоопасность, малая объемная масса (требуются большие емкости для хранения).

Природный газ – наиболее дешевое топливо. Его основным горючим компонентом является метан CH4 = 95%.

Искусственные газы:

  1. коксовый газ – продукт коксования углей;

горючие компоненты – Н2 = 46-60%; СН4 = 20-30%; МДж/м3;

  1. доменный (колошниковый) газ получают в процессе доменной плавки, содержит около 30% СО; МДж/м3.

Жидкое топливо.

Естественное жидкое топливо – нефть. Как топливо ее используют редко.

Искусственное жидкое топливо – это продукты переработки нефти: бензин, лигроин, керосин, газойль и др. Остаток переработки – мазут. Мазут – топливо металлургической промышленности и энергетики. Перед сжиганием мазут нагревают до 70-80оС с целью понижения его вязкости. Состав мазута – это соединения углеродов. С = 85-88%; Н2 = 10%; МДж/кг.

Твердое топливо.

Это каменный и бурый угли, антрацит, горючие сланцы, торф.

Основной метод переработки угля – коксование, заключающийся в сухой перегонке топлива путем нагрева угля без доступа воздуха при температурах 900-1100оС в коксовых печах. Получается спекшийся кокс, пористый, механически прочный, применяемый в металлургии, в основном для выплавки чугуна. Содержание С=75-85%; МДж/кг.

Средняя теплотворная способность

Средняя теплотворная способность 1 м3 природного газа превышает 11000 ккал; энергии, содержащейся в 1 м3 природного газа достаточно, чтобы выплавить 30 кг чугуна. Замена других видов топлива газом, в частности угля, дает большую экономию, поскольку добыча угля дороже, чем газа и теплотворная способность его ниже. Газ, добытый в 1969 г., заменил 275 млн. т угля – 45 % его общей добычи в стране. Использование природного газа в промышленности вместо кокса и другого топлива снижает себестоимость продукции.

Средняя теплотворная способность 1 м3 природного газа превышает 1 1 000 ккал; энергии, содержащейся в 1 м3 природного газа достаточно, чтобы выплавить – 30 кг чугуна. Замена других ви-дов топлива газом, в частности угля, дает большую экономию, по-скольку добыча угля дороже, чем газа и теплотворная способность его ниже. Газ, добытый в 1969 г., заменил 275 млн. т угля – 45 % его общей добычи в стране. Использование природного газа в про-мышленности вместо кокса и другого топлива снижает себестои-мость продукции.

Средняя теплотворная способность 1 м3 природного газа превышает 46000 кДж; энергии, содержащейся в 1 м3 природного газа, достаточно, чтобы выплавить 30 кг чугуна. Замена газом других видов топлива, в частности угля, дает большую экономию, поскольку добыча угля дороже, чем газа, и теплотворная способность его ниже. С использованием природного газа производится около 86 % мартеновской стали, около 42 % проката. Использование природного газа в промышленности вместо кокса и другого топлива снижает себестоимость продукции.

Средняя теплотворная способность 1 м3 природного газа – около 40 000 кДж; энергии, содержащейся в 1 м3 природного газа, достаточно, чтобы выплавить 30 кг чугуна. Замена газом других видов топлива, в частности угля, дает боль – Шую экономию, поскольку добыча угля дороже, чем газа, и теплотворная способность угля ниже.

Средняя теплотворная способность воздушносухих дров составляет 3000 ккал / кг, в то время как средняя теплотворная способность каменного угля – около 7000 ккал / кг и нефти – более 9000 ккал / кг. Следовательно, 1 кг дров равнозначен 0 45 кг каменного угля и 0 3 кг жидкого нефтяного топлива.

Определяется по средней теплотворной способности нефти и количеству тепла, необходимого для производства одной тонны пара.

Газовая горелка.

Для газов со средней теплотворной способностью ( генераторный газ) берут ниппель среднего диаметра. Для газов с малой теплотворной способностью ( колошниковый газ) ставят ниппель с большим диаметром отверстия.

Примечание: При пересчете тепловых единиц в объемные использовалась средняя теплотворная способность газа Алжира – 9450 ккал / куб.

Как видно из табл. 7 – 3, он относится к группе газов средней теплотворной способности. Этот газ обычно применяется для бытовых нужд. Обогащенный примесью газов с большой теплотворной способностью он применяется также в сжатом состоянии в качестве топлива для газобаллонных автомобилей.

Средняя теплотворная способность воздушносухих дров составляет 3000 ккал / кг, в то время как средняя теплотворная способность каменного угля – около 7000 ккал / кг и нефти – более 9000 ккал / кг. Следовательно, 1 кг дров равнозначен 0 45 кг каменного угля и 0 3 кг жидкого нефтяного топлива.

Сырой газ процесса ВТВ также может быть использован для производства водорода как восстановитель в металлургии и как энергетическое топливо средней теплотворной способности.

Устройство калориметра.

Диапазон измерения теплотворной способности может быть очень широк ( от 700 до 30000 кКал / м3), так как для газов, имеющих обычно среднюю теплотворную способность, которая все-таки может иногда достигать высоких величин, можно заказать двухдиа-пазонный прибор, автоматически переходящий на нужный диапазон. Если же теплотворная способность газа низка, то можно заказать исполнение прибора, использующего дополнительный газ-носитель для поддержания устойчивого горения.

Прогресс науки и техники, вызвавший качественно новые изменения в использовании нефти и газа, отразился в топливно-энергетических балансах лишь в одном направлении – в повышении средней теплотворной способности топлив, однако это явилось результатом прежде всего изменения структуры баланса ( увеличилась доля нефти и газа), а не характера использования жидких и газообразных углеводородов.

Возможно ли получить качественный текст без ТЗ

Написать статью на заданную тему, не зная требований, может только специалист с большим стажем, который разбирается в тематике заказа, понимает, на каких моментах нужно сделать акцент, а что можно опустить. На рынке найти такого автора трудно.

Без ТЗ может работать только специалист с большим стажем.

Чтобы понять, насколько хорошо автор разбирается в необходимом направлении, надо изучить его портфолио, которое позволит оценить качество работы копирайтера, определить, подходит он для задания или нет.

Косвенно об авторе могут сказать и отзывы, но следует понимать, что часто авторы набирают положительные характеристики от других людей на легких, дешевых заказах. Поэтому полностью полагаться на хороший рейтинг копирайтера не стоит.

Расчет регулирующего клапана

Kv (Kvs) клапана — характеристика пропускной способности клапана, есть условный объемный расход воды через полностью открытый клапан, м3/час при перепаде давлений 1 Бар при нормальных условиях. Указанная величина является основной характеристикой клапана.

  ,   где   G — расход жидкости, м3/час;      

                                               Δp   — перепад давления на полностью открытом клапане, бар

При подборе клапана рассчитывается значение Kv, затем округляется в большую сторону до ближайшего значения соответствующего паспортной характеристике (Kv) клапана. Регулирующие клапаны выпускают, как правило, с величинами Kvs, возрастающими в геометрической прогрессии :

Kvs: 1.0, 1.6, 2.5, 4.0, 6.3, 10, 16 …………

 Расчитать радиатор

Точный тепловой расчет производится  по специальным методикам.

Приближенный расчет необходимой тепловой мощности для средней полосы Росии можно расчитать по следующей формуле:

Мощность кВт.= (Lд *Lш* Hв)/ 27,

  где:   Lд — длина помещения, м;     Lш — ширина помещения, м;   Hв — высота потолка, м.

При нарахуванні щомісячних платежів за опалення та гарячу воду часто виникає плутанина. Наприклад, якщо в багатоквартирному будинку коштує загальнобудинковий теплолічильник, то розрахунок з постачальником теплової енергії ведеться за спожиті гігакалорії (Гкал). Водночас тариф на гарячу воду для мешканців зазвичай встановлюється в рублях за кубічний метр (м3). Щоб розібратися в платежах, корисно вміти переводити Гкал в куб.м.

Інструкція

1

Необхідно обмовитися, що теплова енергія, яка вимірюється в Гкал, і обсяг води, який вимірюється в кубічних метрах, є абсолютно різними фізичними величинами. Це відомо з курсу фізики середньої школи. Тому насправді мова йде не про переведення гігакалорій в кубометри, а про знаходження відповідності між кількістю теплоти, витраченим на підігрів води, і обсягом отриманої гарячої води.

2

За визначенням, калорія — це кількість теплоти, потрібної для нагрівання одного кубічного сантиметра води на 1 градус Цельсія. Гігакалорія, застосовувана для виміру теплової енергії в теплоенергетиці та комунальному господарстві, це мільярд калорій. В 1 метрі 100 сантиметрів, отже, в одному кубічному метрі — 100 х 100 х 100 = 1000000 сантиметрів. Таким чином, щоб нагріти куб води на 1 градус, буде потрібно мільйон калорій або 0,001 Гкал.

3

Температура гарячої води, що тече з крана, повинна становити не менше 55оС. Якщо холодна вода на вході в котельню має температуру 5оС, то її потрібно буде нагріти на 50оС. На підігрів 1 кубометра буде потрібно 0,05 Гкал. Однак при русі води по трубам неминуче виникають тепловтрати, і кількість енергії, витрачений на забезпечення ГВП, в дійсності буде приблизно на 20% більше. Середній норматив споживання теплової енергії для отримання куба гарячої води приймається рівним 0,059 Гкал.

4

Розглянемо простий приклад. Нехай в міжопалювальний період, коли все тепло йде тільки на забезпечення ГВП, витрата теплової енергії за показаннями загальнобудинкового лічильника склав 20 Гкал за місяць, а мешканці, в квартирах яких встановлені водолічильники, витратили 30 куб.м гарячої води. На них припадає 30 х 0,059 = 1,77 Гкал. Витрата тепла на всіх інших мешканців (хай їх буде 100): 20 — 1,77 = 18,23 Гкал.

Теплотворность твердых материалов

К этой категории относится древесина, торф, кокс, горючие сланцы, брикетное и пылевидное топливо. Основная составная часть твердого топлива — углерод.

Особенности разных пород дерева

Максимальная эффективность от использования дров достигается при условии соблюдения двух условий — сухости древесины и медленном процессе горения.

Куски дерева распиливают или рубят на отрезки длиной до 25-30 см, чтобы дрова удобно загружались в топку

Идеальными для дровяного печного отопления считаются дубовые, березовые, ясеневые бруски. Хорошими показателями характеризуется боярышник, лещина. А вот у хвойных пород теплотворность низкая, но высокая скорость горения.

Как горят разные породы:

  1. Бук, березу, ясень, лещину сложно растопить, но они способны гореть сырыми из-за низкого содержания влажности.
  2. Ольха с осиной не образуют сажи и «умеют» удалять ее из дымохода.
  3. Береза требует достаточного количества воздуха в топке, иначе будет дымить и оседать смолой на стенках трубы.
  4. Сосна содержит больше смолы, чем ель, поэтому искрит и горит жарче.
  5. Груша и яблоня легче других раскалывается и отлично горит.
  6. Кедр постепенно превращается в тлеющий уголь.
  7. Вишня и вяз дымит, а платан сложно расколоть.
  8. Липа с тополем быстро прогорают.

Показатели ТСТ разных пород сильно зависят от плотности конкретных пород. 1 кубометр дров эквивалентен примерно 200 литрам жидкого топлива и 200 м3 природного газа. Древесина и дрова относятся к категории с низкой энергоэффективностью.

Влияние возраста на свойства угля

Уголь является природным материалом растительного происхождения. Добывается он из осадочных пород. В этом топливе содержится углерод и другие химические элементы.

Кроме типа на теплоту сгорания угля оказывает влияние и возраст материала. Бурый относится к молодой категории, за ним следует каменный, а самым старшим считается антрацит.

По возрасту горючего определяется и влажность: чем моложе уголь, тем больше в нем содержание влаги. Которая также влияет на свойства этого типа топлива

Процесс горения угля сопровождается выделением веществ, загрязняющих окружающую среду, колосники котла при этом покрываются шлаком. Еще один неблагоприятный фактор для атмосферы — наличие серы в составе топлива. Этот элемент при соприкосновении с воздухом трансформируется в серную кислоту.

Производителям удается максимально снизить содержание серы в угле. В результате ТСТ отличается даже в пределах одного вида. Влияет на показатели и география добычи. Как твердое топливо может использоваться не только чистый уголь, но и брикетированный шлак.

Наибольшая топливная способность наблюдается у коксующегося угля. Хорошими характеристиками обладает и каменный, древесный, бурый уголь, антрацит.

Характеристики пеллет и брикетов

Это твердое топливо изготавливается промышленным способом из различного древесного и растительного мусора.

Измельченная стружка, кора, картон, солома пересушивается и с помощью специального оборудования превращается в гранулы. Чтобы масса приобрела определенную степень вязкости, в нее добавляют полимер — лигнин.

Пеллеты отличаются приемлемой стоимостью, на которую влияют высокий спрос и особенности процесса изготовления. Использоваться этот материал может только в предназначенных для такого вида топлива котлах

Брикеты отличаются только формой, их можно загружать в печи, котлы. Оба типа горючего делятся на виды по сырью: из кругляка, торфа, подсолнечника, соломы.

У пеллет и брикетов есть существенные преимущества перед прочими разновидностями топлива:

  • полная экологичность;
  • возможность хранения практически в любых условиях;
  • устойчивость к механическим воздействиям и грибку;
  • равномерное и длительное горение;
  • оптимальный размер гранул для загрузки в отопительное устройство.

Экологичное топливо — хорошая альтернатива традиционным источникам тепла, которые не возобновляются и неблагоприятно действуют на окружающую среду. Но пеллеты и брикеты отличаются повышенной пожароопасностью, что стоит учитывать при организации места хранения.

Сколько кубов насыщенного пара в одной гигакалории. Как перевести гигакалорию в кубические метры

— температура теплоносителя в обратном трубопроводе.

 Определить скорость воды  в трубе

Скорость движения воды определяется по формуле:   V (м/с) =  4Q/π D2,

                                                                                   где:    Q — расход воды в м3/сек;   π  = 3,14 ;  

                                                                                             D — диаметр трубопровода в м2;

Пример расчета:   Расход воды Q = 5 м3/ час = 5 м3/ 3600 с = 0, 001388 м3/ с;    Ду трубы = 50 мм  = 0, 05 м;

                                    V =  4 *0,001388 / 3,14 * 0,005*0,005 = 0,707 м/с

  При расчетах систем  Ду (диаметр условный ) трубопровода определяется из условия,

что средняя скорость теплоносителя в запорных устройствах,во избежание гидроудара при закрытии, не должна превышать  2 м/с.

Скорость движения теплоносителя в трубах систем водяного отопления следует принимать в зависимости от допустимого уровня звука:

—не более 1,5 м/с  в общественных зданиях и помещениях;

— не более 2 м/с  в административно-бытовых зданиях и помещениях;

— не более 3 м/с  в производственных зданиях и помещениях.

(минимальная скорость движения воды из условия удаления воздуха V = 0, 2- 0,3 м/с)

Отопительное оборудование для отопления сжиженным газом

Котел на сжиженном газе отличается безопасностью конструкции и надежностью работы

Для отопления частного дома на сжиженном газе используют как отопительные котлы с водяным контуром, так и газовые конвекторы. Но среди всех видов подобного оборудования лидируют все же котлы отопления на сжиженном газе, как наиболее производительные. Отзывы об отоплении на сжиженном газе с использованием конвекторов редко бывают положительными.

Газовые котлы отопления для сжиженного газа по своей конструкции почти не отличаются от тех, что потребляют магистральный газ. Разница только в устройстве горелок, поскольку давление пропан-бутана, поступающего из баллона, почти в 2 раза выше, чем природного метана. Соответственно, и жиклеры в горелках тоже различаются по внутреннему диаметру. Некоторые различия есть также и в устройствах для регулировки подачи воздуха.

Газовые котлы отопления для сжиженного газа по своей конструкции почти не отличаются от тех, что потребляют магистральный газ. Разница только в устройстве горелок, поскольку давление пропан-бутана, поступающего из баллона, почти в 2 раза выше, чем природного метана. Соответственно, и жиклеры в горелках тоже различаются по внутреннему диаметру. Некоторые различия есть также и в устройствах для регулировки подачи воздуха.

Конструктивные различия настолько незначительны, что в случае необходимости достаточно только заменить горелки в котле, предназначенном для метана, и не придется покупать новый отопительный котел на сжиженном газе.

Рассмотрим, чем различаются между собой основные модели котлов для системы отопления на сжиженном газе:

  • Тип котла. Среди агрегатов для отопления частного дома сжиженным газом в баллонах выделяют котлы одноконтурные и двухконтурные. Первые служат только для отопительной системы, а вторые, кроме того, обеспечивают горячей водой. Камера сгорания в котлах устроена по-разному, она может быть открытой либо закрытой. Выпускаются как большие напольные модели, так и компактные настенные;
  • КПД. Судя по отзывам, отопление на сжиженном газе может стать по-настоящему рациональным и экономичным, если газовый котел обладает коэффициентом полезного действия не ниже 90-94%;
  • Мощность котла. Считается одним из основных параметров при отоплении частного дома сжиженным газом. Необходимо убедиться, что паспортные характеристики агрегата позволят ему развивать достаточную мощность, чтобы обеспечить всю площадь жилища теплом, но при этом не допуская перерасхода сжиженного газа на отопление;
  • Производитель. В то время как разводку труб в системе отопления на сжиженном газе можно делать своими руками, газовый котел ни в коем случае не должен быть самодельным. Более того, желательно отдавать предпочтение хорошо зарекомендовавшим себя отечественным или зарубежным производителям.

Котлы на сжиженном газе запрещено устанавливать в подвальных помещениях, поскольку пропан-бутановая смесь тяжелее воздуха. Такой газ при утечках не выветривается, а скапливается на уровне пола, что может привести к взрыву.

Плотность древесины и ее влияние на теплотворность

Кроме содержания влаги, на теплотворную способность дров влияет и другой фактор, а именно – плотность. Это обычная физическая величина, показывающая, какой вес вещества приходится на стандартный объем (обычно на один кубометр).

Чтобы оценить теплотворность, нужно использовать немного другую характеристику, а именно удельную теплотворность, представляющую собой величину, производную от плотности и теплотворности.

Экспериментальным путем были получены сведения об удельной теплотворности тех или иных пород древесины. Сведения даны для одинакового показателя влажности в 12 процентов. По результатам эксперимента была составлена вот такая таблица:

удельная теплотворность

Используя данные из этой таблицы вы легко сможете сравнить теплотворную способность различных пород древесины.

Где и как хранить топливо

Не всегда потребители учитывают необходимость строительства топливохранилища при выборе теплогенератора, а продавцы оборудования им об этом тактично не напоминают. «Солярку» в канистрах не навозишься, к тому же покупать оптом значительно дешевле. Оптом — это значит бензовозом. Самый маленький — на шасси «Газели», вместимость его цистерны — 1,3 м3. Следующий — шасси ГАЗ 3309, он привезёт 4,9 м3. Далее имеются 6,2, 6,5, 6,8 м3 и так далее, максимум 15,8 м3. В стоимости топлива немалую долю «тянут» транспортные расходы, поэтому возить по полцистерны невыгодно. Исходя из этого и сезонной доступности проезда тяжёлого автотранспорта вместимость топливохранилища рекомендуется принимать в пределах 0,25-1 годовой потребности и не меньше доступной в регионе автоцистерны.

Строительные и противопожарные нормы разрешают хранить в котельной запас топлива всего лишь в 50 л, поэтому вместительное топливохранилище должно быть устроено за пределами дома либо в изолированной от здания противопожарной стеной пристройке с отдельным входом. Закапывать, как часто делали раньше, металлический резервуар (к примеру, списанную цистерну) в землю, не рекомендуем. Грунт промерзает, ёмкость и трубопроводы нужно теплоизолировать, сталь со временем корродирует, осуществлять контроль за герметичностью ёмкости невозможно. А новый, долговечный металлический резервуар весьма дорог.

Существуют полимерные топливные резервуары для размещения в грунте, они не подвержены коррозии, но не столь прочны, как стальные

Для небольшого объекта, каковым является частный жилой дом, рациональнее соорудить отдельное хозяйственное строение или пристройку к дому, где можно будет поддерживать положительную температуру. Ёмкости — стандартные полимерные баки, чаще используют на 1000 л. Они компактны, занимают немного места, имеют все необходимые технологические отверстия для объединения в систему, относительно несложно загружаются и очищаются.

Топливохранилище частного дома на 3 м3 в отапливаемом помещении — удобно и безопасно.

8.2 Реальный газ

Относительнуюплотностьреальногогазавычисляютпоформуле

где

d (t, р) -относительнаяплотностьреальногогаза;

Zair(t, p) -коэффициентсжимаемостисухоговоздухастандартногосостава;

Zmix(t, p) -коэффициентсжимаемостигаза.

КоэффициентсжимаемостиZmix(t, p) вычисляютпоформуле (), сиспользованиемзначенийкоэффициентовсуммирования , приведенныхдляиндивидуальныхчистыхвеществв (). КоэффициентсжимаемостиZair(t, p) приведенв ():

Zair (273,15 К, 101,325 кПа) = 0,99941;

Zair (288,15 К, 101,325 кПа) = 0,99958;

Zair (293,15 К, 101,325 кПа) = 0,99963.

Плотностьреальногогазавычисляютпоформуле

где

ρ (t, p) -плотностьреальногогаза.

ЧислоВоббереальногогазавычисляютпоформуле

где

W-числоВоббереальногогаза;

-вычисляютпоформуле ().

Примечание 16 -Требуетсяопределеннаявнимательностьприпримененииединицизмеренияпри
вычислениях, приведенныхвнастоящемподразделе, особеннопривычисленияхплотности. ПриR, выраженнойв джоуляхнамоль-кельвин, р-вкилопаскаляхиМ-вкилограммахнакиломоль, значениеρавтоматическиполучаетсявкилограммахнакубическийметр-эторекомендуемаяединицаСИ.

Состав и характеристики топлив

Топливом может быть названо любое вещество, способное при горении (окислении) выделять значительное количество теплоты. По определению, данному Д. И. Менделеевым, «топливом называется горючее вещество, умышленно сжигаемое для получения тепла».

В таблицах ниже представлены основные характеристики различных видов топлив: состав, низшая теплота сгорания, зольность, влажность и т. д.

Примерный состав и теплотехнические характеристики горючей массы твердого топлива

Топливо Состав горючей массы, % Выход летучих веществ,VГ, % Низшая теплота сгорания,МДж/кг Жаро- производи- тельность,tmax, °С RO2 max* продуктовсгорания, %
Дрова 51 6,1 42,2 0,6 85 19 1980 20,5
Торф 58 0,3 6 33,6 2,5 70 8,12 2050 19,5
Горючий сланец 60—75 4—13 7—10 12—17 0,3—1,2 80—90 7,66 2120 16,7
Бурый уголь 64—78 0,3—6 3,8—6,3 15,26 0,6—1,6 40—60 27 19,5
Каменный уголь 75—90 0,5—6 4—6 2—13 1-2,7 9—50 33 2130 18,72
Полуантрацит 90—94 0,5—3 3—4 2—5 1 6—9 34 2130 19,32
Антрацит 93—94 2—3 2 1—2 1 3—4 33 2130 20,2

* — RO2 = CO2 + SO2

Характеристики жидких топлив, получаемых из нефти

Топливо Состав горючей массы, % Зольностьсухоготоплива,AС, % Влагарабочеготоплива,WР, % Низшаятеплотасгораниярабочеготоплива,МДж/кг
Углерод CГ Водород HГ Сера SГ Кислород и азотOГ + NГ
Бензин 85 14,9 0,05 0,05 43,8
Керосин 86 13,7 0,2 0,1 43,0
Дизельное 86,3 13,3 0,3 0,1 Следы Следы 42,4
Солярное 86,5 12,8 0,3 0,4 0,02 Следы 42,0
Моторное 86,5 12,6 0,4 0,5 0,05 1,5 41,5
Мазут малосернистый 86,5 12,5 0,5 0,5 0,1 1,0 41,3
Мазут сернистый 85 11,8 2,5 0,7 0,15 1,0 40,2
Мазут многосернистый 84 11,5 3,5 0,5 0,1 1,0 40,0

Топливо в том виде, в каком оно поступает для сжигания в топки или в двигатели внутреннего сгорания, называется рабочим.

Название «горючей массы» носит условный характер, т. к. действительно горючими ее элементами являются только углерод, водород и сера. Горючую массу можно характеризовать как топливо, не содержащее золы и в абсолютно сухом состоянии.

Зольность топлива. Золой называют твердый негорючий остаток, остающийся после сжигания топлива в атмосфере воздуха. Зола может быть в виде сыпучей масы с плотностью в среднем 600 кг/м3 и в виде сплавленный пластин и кусков, называемых шлаками, с плотностью до 800 кг/м3.

Влажность топлива определяется по ГОСТ 11014-2001 высушиванием навески при 105 — 110 °С. Максимальная влажность достигает 50% и более и определяет экономическую целесообразность использования данного топлива. Влага снижает температуру в топке и увеличивает обхем дымовых газов.

Состав и теплота сгорания горючих газов

Наименование газа Состав сухого газа, % по объему Низшаятеплотасгораниясухого газаQнс, МДж/м3
CH4 H2 CO CnHm O2 CO2 H2C N2
Природный 94,9 3,8 0,4 0,9 36,7
Коксовый (очищенный) 22,5 57,5 6,8 1,9 0,8 2,3 0,4 7,8 16,6
Доменный 0,3 2,7 28 10,2 0,3 58,5 4,0
Сжиженный (ориентировочно) 4 Пропан 79, этан 6, изобутан 11 88,5

Низшей теплотой сгорания рабочего топлива называют теплоту, выделяемую при полном сгорании 1 кг топлива, за вычетом теплоты, затраченной на испарение как влаги, содержащейся в топливе, так и влаги, образующейся от сгорания водорода.

Высшей теплотой сгорания рабочего топлива называю теплоту, выделяемую при полном сгорании 1 кг топлива, считая, что образующиеся при сгорании водяные пары конденсируются.

Сколько в баллоне м3

Посчитаем вес пропанобутановой смеси в самом распространенном баллоне в строительстве: объемом 50 с максимальным давлением газа 1,6МПа. Доля пропана по ГОСТ 15860-84 должна быть не менее 60% (примечание 1 к табл.2):

50л = 50дм3 = 0,05м3;

0,05м3 • (510 • 0,6 + 580 •0,4) = 26,9кг

Но из-за ограничения давления газа 1,6МПа на стенки в баллон этого типа не заправляют более 21кг.

Посчитаем объем пропанобутановой смеси в газообразном состоянии:

21кг • (0,526 • 0,6 + 0,392 •0,4) = 9,93м3

Вывод (для рассматриваемого случая): 1 баллон = 50л = 21кг = 9,93м3

Пример: Известно, что в баллоне 50 литров залито 21 килограмм газа, у которого испытательная плотность равна 0,567. Чтобы посчитать литры нужно 21 разделить на 0,567. Получится 37,04 литра газа.

«>

Adblock detector

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Климат в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: