Сфера применения
Иллюстрация | Описание сферы применения |
Отопление. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.
Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами. |
|
Нагрев проточной воды для бытового использования. Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п. | |
Смешивание несмешиваемых жидкостей. В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции. |
Интеграция в отопительную систему частного дома
Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.
Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.
Преимущества применения кавитационных теплогенераторов
Достоинства вихревого источника альтернативной энергии | |
Экономичность. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования. | |
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.
Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места. |
|
Небольшая масса установки. За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет. |
|
Простая конструкция. Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.
В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна. |
|
Нет необходимости в дополнительных доработках. Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение. | |
Нет необходимости в водоподготовке. Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.
За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются. |
|
Работа оборудования не требует постоянного контроля. Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.
Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить. |
|
Экологичность. Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент — это электродвигатель. |
Физические явления, на основе которых действует теплогенератор
Схема устройства вихревой теплосистемы.
В общем-то, в способе действия теплогенератора Потапова ничего сложного или необычного нет.
Принцип действия этого изобретения основан на процессе кавитации, отсюда его еще называют вихревым теплогенератором. Кавитация основана на образовании пузырьков воздуха в толще воды, вызванном силой вихревой энергии потока воды. Образование пузырьков всегда сопровождается специфическим звуком и образованием некой энергии в результате их ударов на большой скорости. Пузырьки представляют собой полости в воде, заполненные испарениями от воды, в которой они сами и образовались. Жидкость оказывает постоянное давление на пузырек, соответственно, он стремится перемещаться из области высокого давления в область низкого, дабы уцелеть. В итоге, он не выдерживает давления и резко сжимается или «лопается», при этом выплескивая энергию, образующую волну.
Выделяемая «взрывная» энергия большого количества пузырьков обладает такой силой, что способна разрушить внушительные металлические конструкции. Именно такая энергия и служит добавочной при нагреве. Для теплогенератора предусмотрен полностью закрытый контур, в котором образуются пузырьки очень малого размера, лопающиеся в толще воды. Они не обладают такой разрушительной силой, но обеспечивают прирост тепловой энергии до 80%. В контуре обеспечивается поддержание переменного тока напряжением до 220В, целостность важных для процесса электронов при этом сохраняется.
Как уже было сказано, для работы тепловой установки необходимо образование «водяного вихря». За это отвечает встроенный в тепловую установку насос, который образовывает необходимый уровень давления и с силой направляет его в рабочую емкость. Во время возникновения завихрения в воде происходят определенные перемены с механической энергией в толще жидкости. В результате начинает устанавливаться одинаковый температурный режим. Дополнительная энергия создается, по Эйнштейну, переходом некой массы в необходимое тепло, весь процесс сопровождается холодным ядерным синтезом.
Преимущества теплогенераторов при использовании для отопления
Наиболее явное преимущество теплогенераторов – достаточно простое обслуживание, несмотря на возможность свободной установки без спроса специального разрешения на то у сотрудников электросетей. Достаточно раз в полгода проверить трущиеся детали устройства – подшипники и сальники. При этом, по заявлениям поставщиков, средний гарантированный срок службы – до 15 лет и более.
Теплогенератор Потапова отличается полной безопасностью и безвредностью для окружающей среды и использующих его людей. Экологичность обоснована тем, что при работе кавитационного теплогенератора исключаются выбросы в атмосферу вреднейших продуктов от переработки природного газа, твердотопливных материалов и дизельного топлива. Они просто не используются.
[править] Список опубликованных работ
Некоторые книги В. Л. Квинта
- Справочник экономиста промышленного предприятия (соавтор). — Москва: Экономика, 1974 г.
- Ускорение технического развития производства. — Москва: Знание, 1976 г.
- Научно-технический прогресс и экономика Красноярского края (в соавторстве). — Красноярск: Красноярское книжное издательство, 1979 г.
- Внедрение и эксплуатация систем автоматизации: региональный экономический аспект. — Москва: Знание, 1981 г.
- Красноярский эксперимент, (в соавторстве с М. М. Гуртовым). — Москва: Советская Россия, 1982 г.
- Региональные научно-технические комплексы (соавтор и редактор). — Донецк-Москва: АН СССР, 1983 г.
- Над нами Полярная звезда. — Москва: Советская Россия, 1984 г.
- Управление научно-техническим прогрессом: региональный аспект. — Москва: Наука,1986 г.
- Предприятие-отрасль-регион. Экономическая и научно-техническая информация (в соавторстве). — Москва: Финансы и статистика, 1987 г.
- Научно-техническое развитие экономики Дагестана (в соавторстве). — Махачкала: Дагестанское книжное издательство, 1988 г.
- Межреспубликанские отношения в СССР. — Варшава, 1988 г.
- Капитализация новой России (Capitalizing on the New Russia). — Нью-Йорк: Arcade Publishing, 1993 г.
- Инвестиции в возникающие рынки (Emerging Market Investments) (соавтор). — Лондон: DRI/McGraw-Hill, 1996 г.
- Создание и управление международными совместными предприятиями (Creating and Managing International Joint Ventures (в соавторстве). Вестпорт — Westport, США, Лондон: Quorum Books, 1996 г.
- Возникающий рынок России (Emerging Market of Russia): Энциклопедический справочник инвестиций и торговли (автор, главный редактор). Нью-Йорк (также опубликована в Англии, Германии, Сингапуре, Австралии, Канаде): John Wiley&Sons, 1998 г.
- Глобальный возникающий рынок в переходный период (The Global Emerging Market in Transition). Нью-Йорк: Fordham University Press, 1999 г. Paper back ed.- 2000 г.
- Международные слияния и поглощения, совместные предприятия (в соавторстве). — Нью-Йорк, 2002 г., 2004 г.
- Инвестирование под огнем: победные стратегии (Investing under Fire: Winning Strategies). (В соавторстве). — Принстон: Bloomberg Press, 2003 г.
- Глобальный формирующийся рынок в переходный период (The Global Emerging Market in Transition). — 2-е дополн. издание. Нью-Йорк: Fordham University Press, 2004 г. Учебное издание — 2006 г.
- Глобальный формирующийся рынок: стратегическое управление и экономика (The Global Emerging Market:Strategic Management and Economics). — Нью-Йорк, Лондон: Routledge-Taylor & Francis, 2009 г.
- Абрис стратегии. — Москва: Огонёк-Терра, 2009 г.
- Бизнес и стратегическое управление. — Санкт-Петербург: СПбГУП, 2010 г.
Немного истории
Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.
Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.
Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.
Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.
За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!
К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.
Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.
ВОЕВОДА Михаил Иванович
Михаил Иванович Воевода родился 14 ноября 1957 года в Новосибирске. После окончания в 1982 году Новосибирского Государственного Медицинского Университета обучался в клинической ординатуре по специальности «внутренние болезни». Далее в ГУ НИИ терапии СО РАМН прошел служебные ступени от старшего лаборанта до заместителя директора по научной работе.
В 1990-2003 годах — заместитель директора по научной работе ГУ НИИ терапии СО РАМН.
С 2003 по 2018 годы — директор ФГБНУ «Научно-исследовательский институт терапии и профилактической медицины», одновременно — профессор кафедры фундаментальной медицины Медицинского факультета НГУ.
С 2007 года — руководитель Научно-образовательного Центра «Генетика заболеваний человека» НГУ; с 2003 года (по совместительству) — заведующий сектором молекулярной эпидемиологии и эволюции человека Института цитологии и генетики СО РАН, с 2012 года — заведующий лабораторией молекулярной генетики человека этого Института.
В 2010 году избран главным ученым секретарем СО РАМН; с 2017 года — заместитель Председателя СО РАН.
С 2019 года — и.о. директора, а с 2021 года — директор ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины».
Член-корреспондент РАМН с 2005 года, член-корреспондент РАН с 2014 года, академик РАН с 2016 года — Отделение медицинских наук РАН. Специалист в области генетики терапевтических заболеваний.
С конца 80-х годов академик М.И. Воевода активно занимается изучением роли наследственных факторов при различных заболеваниях человека, освоением новых методов молекулярно-генетических исследований. Им налажено сотрудничество с лабораториями США, Франции, Германии, Канады и других стран.
В настоящее время основными направлениями его научной деятельности являются: молекулярно-генетические основы мультифакториальных и наследственных заболеваний, молекулярно-эпидемиологическая характеристика разнообразия генофонда населения Северной и Центральной Азии, разработка методов молекулярно-генетического анализа вариабельности генома человека. Развиваемая им тематика органически интегрировалась во все клинические и эпидемиологические исследования института, способствовала привлечению внимания большого числа исследователей Сибири к генетическим проблемам патологии человека.
Им получены новые данные о распространенности в различных этнических группах Северной Азии мутаций, ответственных за развитие ряда наследственных заболеваний, и полиморфизме генов, влияющих на формирование предрасположенности к мультифакториальным патологическим состояниям. Установлено наличие выраженных различий генофондов коренного и пришлого населения по этим характеристикам. Показано, что связь генетических маркеров с различными фенотипическими показателями, отличается в этнических группах. Общее количество его научных публикаций — более 1100.
Воевода М.И. принимает активное участие в подготовке научных кадров: в настоящее время является профессором кафедры клинической биохимии Института медицины и психологии В.Зельмана НГУ; под его руководством защищено более 30 диссертаций на соискание ученой степени кандидата и доктора наук; он научный руководитель очных аспирантов; основатель Научной школы: № НШ – 01152 «Молекулярная эпидемиология заболеваний человека».
М.И. Воевода является членом Высшей аттестационной комиссии при Минобрнауки России; экспертом Российской академии наук, Российского научного фонда; член Совета Международного общества терапевтов; Президент и член Совета Международного общества по приполярной медицине. В 2009 году избран вице-президентом Российского научного медицинского общества терапевтов; вице-президент Национального общества по изучению атеросклероза; полномочный представитель Российского научного медицинского общества терапевтов по Сибири и Дальнему Востоку. С 2020 года М.И. Воевода является Заслуженным деятелем науки Новосибирской области.
М.И. Воевода — заместитель главного редактора «Сибирского научного медицинского журнала»; член редакционных коллегий журналов «Вавиловский журнал генетики и селекции», «Атеросклероз», «Российский кардиологический журнал»; главный редактор журнала «Академия медицины и спорта», член редакционного совета журнала «Медицинский альянс».
Воевода М.И. награжден Медалью Ордена «За заслуги перед Отечеством» II степени; лауреат премии имени академика В.П. Алексеева за научный вклад в антропологию и археологию по проблемам междисциплинарных исследований (2006 г.), награжден медалью «Hildes Award» канадского общества по приполярной медицине (2012 г.).
Выбор мощности генератора тепла
Производительность отопительного устройства должна соответствовать теплопотерям конкретного дома в самые холодные дни зимы. В идеале, необходимо произвести тепловые расчёты. Более простой способ – котёл выбирают такой, чтобы на каждые 10 квадратных метров здания приходился 1 кВт мощности. Нужно отметить, что такая формула подходит для коттеджей, которые хорошо утеплены. Запас в 15-20 процентов не повредит, но слишком мощные теплогенераторы, большинство времени работающие в зажатом режиме, будут выдавать КПД ниже номинального и расходовать лишнее топливо.
Эта таблица поможет сориентироваться в производительности теплогенераторов
Пара газовых котлов, установленных каскадом
Утепление вихревого двигателя
Перед тем как запускать в работу устройство следует его утеплить. Делается это после сооружения кожуха. Конструкцию рекомендуется обмотать тепловой изоляцией. Как правило, в этих целях используется стойкий к высоким температурам материал. Слой утепления крепится к кожуху прибора проволокой. В качестве тепловой изоляции стоит использовать один из следующих материалов:
Готовый тепловой генератор.
- стекловата;
- минеральная вата;
- базальтовая вата.
Как видно из списка, подойдет практически любая волокнистая теплоизоляция. Вихревой индукционный нагреватель, отзывы о котором можно найти по всему рунету, должен утепляться качественно. В ином случае есть риск, что прибор будет отдавать больше теплоты в помещение, где он установлен. Полезно знать: «Утепление трубопроводов минеральной ватой».
Какими особенностями наделены древесные печи длительного горения читайте в этой статье.
В конце следует дать несколько советов. Первое – поверхность изделия рекомендуется окрасить. Это защитит его от коррозии. Второе – все внутренние элементы прибора желательно сделать потолще. Такой подход повысит их износостойкость и сопротивляемость агрессивной среде. Третье – стоит изготовить несколько запасных крышек. Они также должны иметь на плоскости отверстия требуемого диаметра в необходимых местах. Это необходимо, чтобы путем подбора добиться более высокого КПД агрегата.
Главное это двигатель
Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.
Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.
Чертеж вихревого теплогенератора.
Список инструментов и материалов:
- угловая шлифовальная машинка;
- сварочный аппарат;
- электродрель;
- набор сверл;
- рожковые или накидные ключи на 12 и на 13;
- болты, гайки, шайбы;
- металлический уголок;
- грунтовка, краска, кисть малярная.
- Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант – сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
- Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
- Сделайте покраску рамы.
- Просверлите отверстия в каркасе под болты и установите двигатель.
Утепление генератора
Схема подключения теплогенератора к системе отопления.
Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.
Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.
- Соедините его при помощи замка, который используют жестянщики для водосточных труб.
- Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
- Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
- Поместите устройство в кожух, закройте крышками.
Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).
Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.
Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.
Схема стационарного теплогенератора.
Инструменты: сварочный аппарат, угловая шлифовальная машинка.
Материалы: листовой металл или полосовое железо, толстостенная труба.
Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.
- Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
- Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
- Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.
Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.
Как сделать теплогенератор своими руками
Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.
Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.
На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.
Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.
Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.
По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.
Формула представляет собой следующее:
Епот = – 2 Екин
Где Екин =mV2/2 – это кинетическое движения Солнца;
Масса планеты – m, кг.
Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:
Принцип действия
Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.
В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.
Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.
Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.
Достоинства вихревого теплогенератора:
- Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
- Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
- Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
- Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
- Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.
Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы: это высокая стоимость и редкое применение на практике.
Пути повышения производительности
Схема теплового насоса.
В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.
Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.
Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.
- Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
- Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
- Сделайте крышки с одной и другой стороны.
- Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
- Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.
На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.
Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.