Современные системы накопления энергии

Плюсы использования теплового аккумулятора в доме с утеплением

Если на вашем участке нет народного достояния – магистрального газа, впору задуматься о правильной системе отопления. Самое лучшее время, когда только готовится проект, а самое неподходящее – когда вы уже живете в доме и поняли, что отопление обходится очень дорого.

Идеальный дом для монтажа твердотопливного котла и теплового аккумулятора – это здание с хорошим утеплением и низкотемпературной системой отопления. Чем лучше утепление, тем меньше теплопотери и тем дольше ваш тепловой аккумулятор сможет поддерживать комфортное тепло.

Низкотемпературная система отопления. Выше мы привели пример с радиаторами, когда температурный режим составлял 90/70/20. При низкотемпературном режиме условия будут – 35/30/20. Почувствуйте разницу. В первом случае уже при понижении температуры ниже 90 градусов вы почувствуете недостачу тепла. В случае с низкотемпературной системой, можно спокойно спать до утра. Зачем быть голословным. Предлагаем просто посчитать выгоду.

Способ мы просчитали выше.

Вариант с низкотемпературной системой отопления

Q
=1000*4200*(90-35)=231
000
000 Дж (231000 кДж)

231000/3600=64,2 кВт. Это почти в три раза больше при одинаковом объеме теплового аккумулятора. При теплопотерях – 5 кВт такого запаса хватит на всю ночь.

А теперь о финансах. Допустим, мы смонтировали тепловой аккумулятор с электрическими тенами. Запасаем по ночному тарифу. Мощность тенов – 10 кВт. 5 кВт уходит на текущий обогрев дома в ночное время, 5 кВт мы можем запасти на день. Ночной тариф с 23-00 до 07-00. 8 часов.

8*5=40 кВт. Т.е. днем мы будем пользоваться в течении 8-ми часов ночным тарифом.

С 1 го января 2015 года в Краснодарском крае дневной тариф составляет 3,85, ночной – 2,15.

Разница – 3,85-2,15=1,7 рубля

40*1,7=68 рублей. Сумма кажется маленькой, но не спешите. Выше мы давали ссылки на утепленный дом и неутепленный. Представим, что вами сделана ошибка – дом построен, вы уже прошли первый отопительный сезон и поняли, что отопление электричеством обходится очень дорого. Выше мы привели пример теплопотерь неутепленного дома. В примере теплопотери составляют 18891 ватт. Это в холодную пятидневку. Средняя за отопительный сезон будет ровно в 2 раза меньше и составит 9,5 кВт.

Следовательно, за отопительный сезон нам необходимо 24*149*9,5=33972 кВт

В рублях 16 часов, 2/3 (22648) по дневному тарифу, 1/3 (11324 кВт) по ночному.

22648*3,85=87195 руб

11324*3,85=24346 руб

Итого: 111541 руб. Цифра за тепло просто ужасающая. Такая сумма способна опустошить любой бюджет. Если же ночью запасти тепло, то можно сэкономить. 38502 рублей за отопительный сезон. Немалая экономия. Если у вас такие расходы, в пару к электрокотлу необходимо ставить твердотопливный котел или камин с водяной рубашкой. Есть время и желание – закинули дровишки, запасли тепло в тепловой аккумулятор, остальное добиваем электричеством.

В утепленном доме с тепловым аккумулятором стоимость отопительного сезона будет сопоставима с аналогичными неутепленными домами, в которых есть магистральный газ.

Наш выбор, когда нет магистрального газа, такой:

Хорошо утепленный дом;

Низкотемпературная система отопления;

Тепловой аккумулятор;

Твердотопливный котел иди водяной камин;

Электрокотел.

Если у вас в доме имеется котельная установка, работающая на твердом топливе, то вам должно быть известно, что она не способна функционировать долгое время без вмешательства человека. Это обусловлено необходимостью периодически загружать дрова в топку. Если этого вовремя не сделать, то система начнет остывать, а температура в комнатах будет понижаться.

Если отключится электроэнергия при разгоревшейся топке, то возникнет опасность закипания воды в рубашке оборудования, следствием чего станет ее разрушение. Данные проблемы можно решить методом установки теплоаккумулятора. Он выполняет еще и роль защиты установок из чугуна от растрескивания, когда происходит резкий перепад температуры сетевой воды.

Технологии с использованием льда

Разрабатывается ряд технологий, где лед производится во внепиковые периоды и позднее используется для охлаждения. К примеру, кондиционирование воздуха может быть экономичнее за счет использования дешевого электричества ночью для заморозки воды и последующего использования холодильной мощности льда днем для уменьшения количества энергии, требуемой для поддержания кондиционирования воздуха. Аккумулирование тепловой энергии с применением льда использует высокую теплоту плавления воды. Исторически лед перевозили с гор в города, чтобы использовать его, как охладитель. Одна метрическая (= 1 м3) тонна воды может хранить 334 миллиона джоулей (Дж) или 317 000 Британских термических единиц (93 кВт*ч). Относительно небольшой накопитель может хранить достаточно льда, чтобы охлаждать крупное здание целый день или неделю.

Помимо применения льда для прямого охлаждения, он также используется в тепловых насосах, на которых работают системы отопления. В этих сферах изменения энергии фазы обеспечивают очень серьезный теплопроводный слой, близкий к нижнему порогу температур, при котором может работать тепловой насос, использующий теплоту воды. Это позволяет системе переносить серьезнейшие отопительные нагрузки и увеличивать промежуток времени, в течение которого элементы источников энергии могут возвращать тепло в систему.

Система от Isentropic

Система, которая была разработана ныне обанкротившейся британской фирмой «Isentropic», работала так, как указано ниже. Она включала в себя два изолированных контейнера, заполненных измельченной породой или гравием; нагретый сосуд, хранящий тепловую энергию при высокой температуре и давлении, и холодный сосуд, хранящий тепловую энергию при низкой температуре и давлении. Сосуды соединены трубами вверху и внизу, а вся система заполнена инертным газом аргоном.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

Молекулярные химические связи

На данный момент исследуется возможность хранения энергии в молекулярных химических связях. Уже достигнута плотность энергии, эквивалентная ионно-литиевым батареям.

Когда выгодно выполнить монтаж теплового аккумулятора

У вас стоит твердотопливный котел;

Вы отапливаетесь электричеством;

В помощь к отоплению добавлены солнечные коллекторы;

Есть возможность утилизировать тепло от агрегатов и машин.

Схема монтажа твердотопливного котла с тепловым аккумулятором – идеальное решение для частного дома, когда хочется и уюта, и экономии. При подобной компановке вы растапливаете твердотопливный котел, нагреваете воду в тепловом аккумуляторе и получаете столько тепла, сколько вам нужно. При этом котел будет работать на максимальной мощности и с наибольшим КПД. Сколько тепла дадут дрова или уголь, столько и запасете.

Второй вариант. Монтаж теплового аккумулятора с электрокотлом. Данное решение сработает, если у вас имеется двухтарифный электросчетчик. Запасаем тепло по ночному тарифу, расходуем и днем, и ночью. Если вы решили применить такую систему обогрева, лучше поискать тепловой аккумулятор с возможностью установки электротена прямо в бочку. Электротен стоит дешевле электрического котла, да и материала для обвязки котла не потребуется. Минус работа по монтажу электрокотла. Представляете сколько можно сэкономить?

Третий вариант, когда имеется солнечный коллектор. Весь избыток тепла можно скидывать в тепловой аккумулятор. В демисезонье получается отличная экономия.

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Тепловые аккумуляторы с использованием теплоты фазового перехода

В данном типе тепловых аккумуляторов аккумулирование тепловой энергии основанное на использовании обратимого процесса фазового перехода плавление-затвердевание. В этом случае в качестве теплоаккумулирующего материала используется фазоменяющий материал. Реализация этого способа оказывается более сложной, из-за необходимости усложнения конструкции. Однако в таких тепловых аккумуляторах на единицу объема запасается гораздо большее количество теплоты. При этом процесс зарядки и разрядки может быть осуществлен в узком температурном диапазоне, что оказывается очень важным при необходимости работы тепловых аккумуляторов в условиях небольших температурных напоров.

Некоторые применения тепловых аккумуляторов с использованием теплоты фазового перехода

Пленочная теплица с аккумулятором теплоты в грунте:   1 — теплица   2 — аккумулятор тепла   3, 4 — каналы   5, 6 — трубы   7 — вентилятор

Тепловой аккумулятор для автомобиля

В строительстве

Стеновые панели с использованием фазоменяющих материалов. Как правило, это смесь бетона с парафином или с включенными в него небольшими капсулами, содержащими фазоменяющий материал. Панели с фазоменяющими материалами используются в качестве ограждающих конструкций здания и поглощают излишнее тепло в дневное время, отдавая его в ночное, когда отсутствует поступление солнечной радиации. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь. Эффективность их использования так же связана с тем, что в них сочетаются свойства тепловой защиты, термостабилизатора и собственно аккумуляции тепла. При этом конструкция системы аккумулирования оказывается предельно простой.

В сельском хозяйстве

В сельском хозяйстве тепловые аккумуляторы используются для обогрева теплиц в ночное время с использованием тепла накопленного в светлое время суток. Вентилятор осуществляет циркуляцию воздуха в теплице через тепловой аккумулятор. Избытки тепла в дневное время служат для зарядки теплового аккумулятора, а в ночное время тепловой аккумулятор разряжается и подогревает воздух в теплице.

В системах вентиляции

Применение тепловых аккумуляторов в системах вентиляции для сглаживания перепадов температур в дневное и ночное время. В дневное время происходит зарядка аккумулятора и охлаждение поступающего воздуха, а ночью его нагрев и, соответственно, разрядка теплового аккумулятора. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь.

В системах электроотопления и электрического нагрева воды для горячего водоснабжения

Применение тепловых аккумуляторов для зарядки путем электронагрева в ночное время и использование теплоты в дневное позволяет значительно сократить расходы на электрическую энергию за счёт потребления электроэнергии в ночное время по более низкому тарифу.

В автомобильной промышлености

Применение тепловых аккумуляторов для облегчения пуска двигателя и обогрева салона автомобиля в холодное время. Теплота, запасается во время работы двигателя и может храниться в течение нескольких дней. Для этого тепловой аккумулятор помещается в сосуд Дьюара (термос), обеспечивающий наилучшую теплоизоляцию.

Впервые тепловой аккумулятор предложил канадский конструктор Оскар Шатц. Первые автотермосы появились в Канаде под брендом Centaur, эта компания функционирует и поныне. Среди отечественных разработчиков термосов лидерами можно назвать «Автоплюс МАДИ» и «АвтоТерм».

Хранение солнечной энергии

Солнечная энергия — один из примеров применения накопления тепловой энергии. Большинство практичных активных систем солнечного отопления обеспечивают хранение собранной энергии от нескольких часов до суток. Однако растет число предприятий, использующих сезонные накопители тепловой энергии (STES), позволяющие накапливать солнечную энергию летом для обогрева помещений зимой. Сообщество Drake Landing Solar Community в Альберте, Канада, теперь достигло 97% доли солнечного отопления в течение всего года, что стало возможным только благодаря внедрению STES.

Использование как скрытого, так и явного тепла также возможно при высокой температуре солнечного тепла. Различные эвтектические смеси металлов, таких как алюминий и кремний (AlSi12), обладают высокой температурой плавления, подходящей для эффективного производства пара, в то время как материалы на основе цемента с высоким содержанием глинозема обладают хорошей способностью аккумулировать тепло.

Тепловой аккумулятор своими руками

Сложность изготовления буферных емкостей для отопления заключается в создании надежной теплоизоляции. Для этого нельзя использовать обычную бочку или аналогичную ей емкость. Помимо этого параметра ёмкость радиатора отопления должна выдержать нагрузку воды на стенки и возможные гидравлические удары.

Самая простая конструкция представляет собой куб, внутри которого располагается П-образный трубопровод или змеевик из медной трубы. Последний предпочтительнее, так как он имеет большую площадь теплообменной поверхности, а медь обладает оптимальным значением теплопроводности. Эта конструкция подключается к общей магистрали. Для изготовления емкости системы отопления понадобятся стальные листы, толщиной не менее 1,5 мм и металлическая труба. Ее диаметр должен быть равен сечению трубопровода на этом участке отопления.

Минимальный набор инструментов включает в себя следующее:

  • Сварочный аппарат;
  • Угловая шлифовальная машина (болгарка);
  • Дрель со сверлами по металлу;
  • Измерительный инструмент.

Проще всего изготовить ёмкость для радиаторов отопления кубической формы. Предварительно составляется чертеж, по которому будут выполняться все дальнейшие работы. Наличие ТЭНа не обязательно, но предпочтительно. Он сможет поддерживать уровень нагрева воды на должном уровне.

Порядок изготовления теплового аккумулятора

Сначала вырезаются листы прямоугольной формы, из которых будет состоять корпус емкости системы отопления. На этом этапе нужно учитывать зазор для сварки – он может составлять от 1 до 3 мм в зависимости от аппарата и выбранных электродов. Затем в заготовках вырезают отверстия для крепления трубопровода, ТЭНа и патрубков для наполнения емкости. Чугунные батареи отопления не могут крепиться непосредственно к ней. Поэтому нужно рассчитать тепловые потери от емкости к радиатору.

После сборки конструкции нужно сделать теплоизоляцию корпуса. Для накопительной емкости отопления лучше всего использовать базальтовый утеплитель. Он имеет следующие важные качества:

Не горюч. Плавление происходит при температуре свыше 700°С;

Легко устанавливается. Базальтовая вата достаточно упруга;

Имеет пароизоляционные свойства

Это важно для вывода конденсата, который будет неизбежно скапливаться на корпусе аккумулирующей емкости во время работы отопления.

Применение полимерных материалов (пенополистирол или пенопласт) недопустимо, так как они относятся к группе легковоспламеняющихся. Теплоизоляцию буферной емкости лучше всего делать после подключения к системе отопления. Так можно уменьшить тепловые потери на входных и выходных патрубках.

В качестве ёмкости можно использовать старый стальной резервуар. Но толщина его стенки не должна быть менее 1,5 мм.

Электрификация производства энергии. Транспорт

Современные энергетические (в общем понимании) и коммунальные системы становятся все более электрифицированными. Из-за развертывания все большего количества систем распределенной выработки энергии и, соответственно, распределенного ее накопления местные (традиционные) на основе топлива или возобновляемые источники энергии, а также технологии накопления энергии должны быть в состоянии стать взаимосвязанными — для обслуживания объекта, кампуса, города или какого-либо района. В таких случаях для получения электроэнергии могут использоваться, например, генераторы на природном газе, микротурбины, топливные элементы, солнечные фотоэлектрические системы, ветроэнергетические установки, комбинированные системы совместного производства теплоты и энергии (когенерационные установки). Метод накопления охлажденной воды и ее нагрева вместо сжигания ископаемого топлива максимально увеличивает коэффициент использования электроэнергии, вырабатываемой возобновляемыми источниками энергии, а также экономическую эффективность систем хранения электрической энергии. В свою очередь, электрические распределительные и передающие системы должны быть в состоянии приспособиться к большей электрификации самих источников энергии и накопительных нагрузок.

Для того чтобы выполнить эти условия, в течение нескольких лет использовались микросети. Как локализованная электрическая сеть, кампусы и другие районы аналогичного размера могут генерировать и накапливать электроэнергию из различных распределенных энергетических ресурсов, включая возобновляемые источники энергии. Уравновешивая ресурсы спроса и предложения (в том числе тепловую и электрическую нагрузку) в пределах определенных границ, именно микросетевая система обеспечивает отказоустойчивость, энергоэффективность и экономию затрат.

Еще один важный момент, который в какой-то момент начал оказывать влияние на нагрузку электросетей, связан с изменением парадигмы личного автотранспорта. По мере того как потребительский выбор смещается в сторону электромобилей и других альтернативных видов транспорта, все более актуальным становится удовлетворение потребности в соответствующей инфраструктуре, направленной на энергоснабжение этих электрифицированных транспортных средств. Подобно изменяющейся мощности возобновляемых источников энергии, переменная нагрузка из-за зарядки электромобилей, вероятно, превысит способность имеющихся систем выработки энергии соответствовать растущему спросу. Легко представить такой вариант развития событий, в котором все сотрудники одновременно приходят на работу и ставят свои электромобили на зарядку — или наоборот, когда люди возвращаются домой в конце дня и тоже подключают их подзарядиться. Интеграция дополнительных ресурсов накопления энергии в электрическую систему может помочь обеспечить требуемую энергию наиболее экономичным способом, используя для этого предварительно запасенную энергию в периоды низкой нагрузки, и система сможет быстро реагировать на повышенное потребление.

Заключение

Тепловой аккумулятор для ракеты — это устройство, которое далеко от понимания обычного потребителя. А вот теплоаккумулятор для системы отопления вы вполне сможете подключить самостоятельно. Для этого транзитом через бак должен будет проходить обратный трубопровод, на концах которого предусмотрены выход и вход.

На первом этапе между собой следует соединить бак и обратку котла. Между ними располагается циркуляционный насос, он будет перегонять теплоноситель из бочки в отсекающий кран, отопительные приборы и расширительный бак. Со второй стороны устанавливается циркуляционный насос и отсекающий кран.

Источник фото — сайт http://www.devi-ekb.ru

Используя накопители тепловой энергии можно экономически эффективно сместить потребление гигаватт энергии. Но на сегодняшний день рынок таких накопителей катастрофически мал, по сравнению с потенциальными возможностями. Основная причина кроется в том, что на начальном этапе зарождения систем аккумуляции тепла, производителями уделялась мало значения исследованиям в этой области. Впоследствии производители в погони за новыми стимулами привели к тому, что технология испортилась, а люди стали неверно понимать ее цели и методы.

Наиболее очевидной и объективной причиной использования системы аккумуляции тепла, является эффективное сокращение количества затрачиваемых средств на потребляемую энергию, к тому же стоимость энергии в пиковые часы, значительно выше, чем в другое время.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Климат в доме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: